
Practical Optional Types for Clojure

Abstract
Typed Clojure is an optional type system for Clojure, a dynamic
language in the Lisp family that targets the JVM. Typed Clojure
enables Clojure programmers to gain greater confidence in the
correctness of their code via static type checking while remaining
in the Clojure world, and has acquired significant adoption in the
Clojure community. Typed Clojure’s type system repurposes Typed
Racket’s occurrence typing, an approach to statically reasoning
about predicate tests, and also includes several new type system
features to handle existing Clojure idioms.

In this paper, we describe Typed Clojure and present these type
system extensions, focusing on three features widely used in Clo-
jure. First, multimethods provide extensible operations, and their
Clojure semantics turns out to have a surprising synergy with the
underlying occurrence typing framework. Second, Java interoper-
ability is central to Clojure’s mission but introduces challenges
such as ubiquitous null; Typed Clojure handles Java interoper-
ability while ensuring the absence of null-pointer exceptions in
typed programs. Third, Clojure programmers idiomatically use im-
mutable dictionaries for data structures; Typed Clojure handles this
with multiple forms of heterogeneous dictionary types.

We provide a formal model of the Typed Clojure type system in-
corporating these and other features, with a proof of soundness. Ad-
ditionally, Typed Clojure is now in use by numerous corporations
and developers working with Clojure, and we report on a quantita-
tive analysis of the use of the features described in this paper in two
substantial code bases.

1. Clojure with static typing
The popularity of dynamically-typed languages in software devel-
opment, combined with a recognition that types often improve pro-
grammer productivity, software reliability, and performance, has
led to the recent development of a wide variety of optional and
gradual type systems aimed at checking existing programs writ-
ten in existing languages. These include TypeScript and Flow for
JavaScript, Hack for PHP, and MyPy for Python among the optional
systems, and Typed Racket, Reticulated Python, and GradualTalk
among gradually-typed systems.1

One key lesson of these systems, indeed a lesson known to early
developers of optional type systems such as StrongTalk, is that type
systems for existing languages must be designed to work with the
features and idioms of the target language. Often this takes the form
of a core language, be it of functions or classes and objects, together
with extensions to handle distinctive language features.

We synthesize these lessons to present Typed Clojure, an op-
tional type system for Clojure. Clojure is a dynamically typed lan-
guage in the Lisp family built to run on the Java Virtual Machine
(JVM) which has recently gained popularity as an alternative JVM
language. It offers the flexibility of a Lisp dialect, including macros,
emphasizes a functional style via a standard library of immutable

1 We use “gradual typing” for systems like Typed Racket with sound inter-
operation between typed and untyped code; Typed Clojure or TypeScript
which don’t enforce type invariants we describe as “optionally typed”.

; a function annotation for ‘pname‘ multimethod.
; Input: non-nil (null) File or String, via union
; Ouput: nilable String
(ann pname [(U File String) -> (U nil String)])
(defmulti pname class) ; multimethod on arg’s class
(defmethod pname String [s] ; String implementation
(pname (new File s))) ; JVM constructors non-nil

(defmethod pname File [f] ; File implementation
(.getName f)) ; JVM method target ‘f‘ verified

; non-nil, but return is nilable
(pname "STAINS/JELLY") ; :- (U nil Str)
;=> "JELLY"

Figure 1. A simple Typed Clojure program

data structures, and provides interoperability with existing Java
code, allowing programmers to use existing Java libraries without
leaving Clojure. Since its initial release in 2007, Clojure has been
widely adopted for “backend” development in places where its sup-
port for parallelism, functional programming, and Lisp-influenced
abstraction is desired on the JVM. As a result, it now has an exten-
sive base of existing untyped programs, whose developers can now
benefit from Typed Clojure. As a result, Typed Clojure is used in
industry, experience we discuss in this paper.

Since Clojure is a language in the Lisp family, we apply the
lessons of Typed Racket, an existing gradual type system for
Racket, to the core of Typed Clojure, consisting of an extended
λ-calculus over a variety of base types shared between all Lisp sys-
tems. Furthermore, Typed Racket’s occurrence typing has proved
necessary for type checking realistic Clojure programs.

However, Clojure goes beyond Racket in many ways, requir-
ing several new type system features which we detail in this paper.
Most significantly, Clojure supports, and Clojure developers use,
multimethods to structure their code in extensible fashion. Fur-
thermore, since Clojure is an untyped language, dispatch within
multimethods is determined by application of dynamic predicates
to argument values. Fortunately, the dynamic dispatch used by mul-
timethods has surprising symmetry with the conditional dispatch
handled by occurrence typing. Typed Clojure is therefore able to
effectively handle complex and highly dynamic dispatch as present
in existing Clojure programs.

But multimethods are not the only Clojure feature crucial to
type checking existing programs. As a language built on the Java
Virtual Machine, Clojure provides flexible and transparent ac-
cess to existing Java libraries, and Clojure/Java interoperation
is found in almost every significant Clojure code base. Typed Clo-
jure therefore builds in an understanding of the Java type system
and handles interoperation appropriately. Notably, Typed Clojure
avoids conflating Java’s null with all other types, leading to auto-
matic type-enforced absence of null-pointer exceptions.

A simple example of these features in combination is given in
figure 1. Here, the pname multimethod dispatches on the class of
the argument—when it is a String, the first method implementa-
tion is called, for a Java File, the second. The method for String

1 2015/7/11

uses Java interoperation to call a File constructor, returning a non-
nil File instance—the method for File invokes the .getName
method with a non-nil target, returning a nilable type. Typed Clo-
jure uses type information to resolve JVM method or constructor
overloads, avoiding expensive runtime reflective calls.

Finally, when not working with existing Java classes and ob-
jects, the most common Clojure data structure is the dictionary,
a high-performance immutable table which Clojure programmers
repurpose for all manner of data types. Simply treating them as
uniformly-typed key-value mappings would be entirely insufficient
for existing programs and programming styles. Instead, Typed Clo-
jure provides a flexible heterogenous map type, in which manda-
tory, optional, and absent keys can be specified.

While these features may seem disparate, they are unified in im-
portant ways. First, they all leverage the type system mechanisms
that Typed Clojure inherits from Typed Racket—multimethods
when using dispatch via predicates, Java interoperation for han-
dling null tests, and heterogenous maps using union types and
reasoning about subcomponents of data. Second, and more signif-
icantly, they are the crucial features for handling Clojure code in
practice. Typed Clojure’s use in real Clojure deployments would
not be possible without effective handling of these three Clojure
features.

Our main contributions are as follows:

1. We motivate and describe Typed Clojure, an optional type sys-
tem for Clojure that understands existing Clojure idioms.

2. We present a sound formal model for the three crucial type
system features that Typed Clojure relies on: multi-methods,
Java interoperability, and heterogenous maps.

3. We evaluate the use of Typed Clojure features on existing Typed
Clojure code, including both open source and in-house systems.

The remainder of this paper begins with an example-driven pre-
sentation of the main type system features in Section 2. We then
incrementally present a core calculus for Typed Clojure covering
all of these features together in Section 3 and prove type sound-
ness (Section 4). We then discuss the full implementation of Typed
Clojure, dubbed core.typed, which extends the formal model in
many ways, and empirical analysis of significant code bases writ-
ten in core.typed in Section 5. Finally, we discuss related work
and conclude.

2. Overview of Typed Clojure
We now begin a tour of the central features of Typed Clojure,
beginning with Clojure itself. In our presentation, we will make use
of the full Typed Clojure system to illustrate the key type system
ideas, before studying the core features in detail in section 3.

2.1 Clojure
Clojure (Hickey 2008) is a Lisp built to run on the Java Virtual Ma-
chine with exemplary support for concurrent programming and im-
mutable data structures. It emphasizes mostly-functional program-
ming, restricting imperative updates to a limited set of structures
which have specific thread synchronization behaviour. By default,
it provides fast implementations of immutable lists, vectors, and
hash tables, which are used for most data structures, although it
also provides means for defining new records.

One of Clojure’s primary advantages is easy interoperation with
existing Java libraries. It automatically generates appropriate JVM
bytecode to make Java method and constructor calls, and treats Java
values as any other Clojure value. However, this smooth interop-
erability comes at the cost of pervasive null, which leads to the
possibility of null pointer exceptions—a drawback we address in
Typed Clojure.

2.2 Typed Clojure
Here is a simple program in Typed Clojure. We define greet as a
one-argument function taking and returning a string.

(ann greet [Str -> Str])
(defn greet [n]
(str "Hello, " n "!"))

(greet "Grace") ; :- Str
;=> "Hello, Grace!"

Strings are accepted, but providing nil (Clojure’s name for Java’s
null) is a static type error—nil is not a string in Typed Clojure.

(greet nil) ; Type Error:
; Expected Str, given nil

Unions We can make the annotation more permissive with ad-
hoc unions to allow nil.

(ann greet-nil [(U nil Str) -> Str])
(defn greet-nil [n]
(str "Hello" (when n (str ", " n)) "!"))

(greet-nil "Donald") ; :- Str
;=> "Hello, Donald!"
(greet-nil nil) ; :- Str
;=> "Hello!"

All Clojure values are true except nil and false, so the comma
is only added when the argument is non-nil.

Typed Clojure guarantees that well-typed code cannot deref-
erence the null-pointer. This is especially important for Clojure
programs—nil is treated like any other distinct datum in Clojure,
and its status as one of only two false values means it is a common
choice to indicate “nothing” or “failure”.

Flow analysis Typed Clojure uses occurrence typing (Tobin-
Hochstadt and Felleisen 2010) to model type-based control flow. In
greetings, a when expression ensures repeat is never passed a
nil argument.

(ann greetings [Str (U nil Int) -> Str])
(defn greetings [n i]
(str "Hello, "

(when i ; when i is a non-nil integer
(apply str (repeat i "hello, ")))

n "!"))
(greetings "Donald" 2) ; :- Str
;=> "Hello, hello, hello, Donald!"
(greetings "Grace" nil) ; :- Str
;=> "Hello, Grace!"

Removing the when expression is a static type error—repeat can-
not be passed nil.

(ann greetings-bad [Str (U nil Int) -> Str])
(defn greetings-bad [n i]
(str "Hello, "

(apply str
(repeat

i ; Type Error:
; Expected Int, given (U nil Int).

"hello, "))
n "!"))

2.3 Java interoperability
Clojure supports interoperability with Java, including the ability to
call constructors, invoke methods, and access fields.

2 2015/7/11

The following Typed Clojure program constructs a new File
instance and calls the getParent method on the result, returning a
string "a", inferred as nullable.

Example 1(.getParent (new File "a/b"))
; :- (U nil Str)
;=> "a"

Typed Clojure helps the Clojure compiler avoid expensive re-
flective calls, however if a specific constructor, method, or field
cannot be found based on the static types of its arguments, a type
error is thrown.

(fn [f] ; Type Error:
(.getParent f)) ; Unresolved interop: getParent

Function arguments default to Any, the most permissive type.
Ascribing a parameter type allows Typed Clojure to find a specific
method.

Example 2(ann parent [(U nil File) -> (U nil Str)])
(defn parent [f]

(if f (.getParent f) nil))

The conditional guards from dereferencing nil, and—as before—
removing it is a static type error, as typed code could possibly
dereference nil.

(defn parent-bad-in [f :- (U nil File)]
(.getParent f)) ; Type Error:

; Cannot call instance method
; java.io.File/getParent on type
; (U nil File).

Since Java-level types do not provide information about nullability,
by default Typed Clojure conservatively assumes that Java method
and constructor arguments, such as "a/b" provided to the File
constructor in Example 1, must be non-nullable, but this can be
configured for particular calls as needed. The target of method
invocations is always non-nullable.

Any Java method returning a reference can also return null —
Typed Clojure rejects programs that assume otherwise.

(defn parent-bad-out [f :- File] :- Str
(.getParent f)) ; Type Error:

; Expected Str, given (U nil Str).

In contrast, JVM invariants guarantee constructors return a non-
null reference.2

Example 3(fn [s :- String] :- File
(new File s))

2.4 Multimethods
Multimethods are a kind of extensible function, and they are widely
used to define Clojure operations. It combines a dispatch function
with one or more methods.

Value-based dispatch This simple multimethod says hello in dif-
ferent languages, as specified by a keyword argument.

Example 4(ann hi [Kw -> Str]) ; multimethod type
(defmulti hi identity) ; dispatch function ‘identity‘
(defmethod hi :en [_] "hello") ; method for ‘:en‘
(defmethod hi :fr [_] "bonjour") ; method for ‘:fr‘
(defmethod hi :default [_] "um...") ; default method

2 http://docs.oracle.com/javase/specs/jls/se7/html/
jls-15.html#jls-15.9.4

When invoked, the arguments are first supplied to the dispatch
function—identity—yielding a dispatch value. A method is then
chosen based on the dispatch value—the arguments are then passed
to the method to finally return a value for the entire expression.

(map hi [:en :fr :bocce]) ; map over keyword vector
;=> ("hello" "bonjour" "um...")

For example, (hi :en) evaluates to "hello"—it executes the
:en method because (= (identity :en) :en) is true and
(= (identity :en) :fr) is false.

Dispatching based on literal values enables certain forms of
method definition, but this is only part of the story for multimethod
dispatch.

Class-based dispatch For class values, multimethods can choose
methods based on subclassing relationships. Recall the multi-
method from figure 1, reproduced here.

(ann pname [(U File String) -> (U nil String)])
(defmulti pname class)
(defmethod pname String [s] (pname (new File s)))
(defmethod pname File [f] (.getName f))

The dispatch function class dictates whether the String or File
method is chosen. The multimethod dispatch rules use isa?, a
hybrid predicate which is a subclassing check for classes and an
equality check for other values.

(isa? (identity :en) :en) ;=> true
(isa? (identity :en) :fr) ;=> false
(isa? (class "STAINS/JELLY") String) ;=> true
(isa? (class "STAINS/JELLY") Object) ;=> true
(isa? (class (new File "JELLY")) String) ;=> false

The current dispatch value and—in turn—each method’s associated
dispatch value is supplied to isa?. If exactly one method returns
true, it is chosen.

In our example, (pname "STAINS/JELLY") chooses the method
for String because (isa? (class "STAINS/JELLY") String)
is true and (isa? (class "STAINS/JELLY") File) is false.
The Stringmethod body (pname (new File "STAINS/JELLY"))
chooses the File method for opposite reasons, resulting in

(.getName (new File "STAINS/JELLY")) ; :- (U nil Str)
;=> "JELLY"

2.5 Heterogeneous hash-maps
Beyond primitives and Java objects, the most common Clojure data
structure is the immutable hash-map, typicially with keyword keys.
This structure is the primary way to represent compound data in
Clojure programs.

Hash-maps are accessed with the get function:

Example 5
(def breakfast
{:en "waffles" :fr "croissants"})

(get breakfast :en) ; :- Str
;=> "waffles"

Additionally, keywords are functions that look themselves up in a
map. Missing keys produce nil.

(:fr breakfast) ; :- Str
;=> "croissants"
(:bocce breakfast) ; :- nil
;=> nil

3 2015/7/11

In Typed Clojure, HMap types describe the most common us-
ages of keyword-keyed maps.

breakfast ; :- (HMap :mandatory {:en Str :fr Str}
; :complete? true)

The inferred type for breakfast holds two kinds of information—
the known entries–:en and :fr—and their types, which are
:mandatory, and that no other key is present, since :complete?
is true.

HMap types default to partial specification—:complete? de-
faults to false. The HMap shorthand ’{:en Str :fr Str}
omits information about absent keys, only providing information
on :mandatory keys.

Example 6(ann lunch ’{:en Str :fr Str})
(def lunch {:en "muffin" :fr "baguette"})
(:en lunch) ; :- Str
;=> "muffin"
(:fr lunch) ; :- Str
;=> "baguette"
; Unknown lookups are now less accurate
(:bocce lunch) ; :- Any
;=> nil

HMaps in practice The next example is extracted from a produc-
tion system at CircleCI, a company with a large production Typed
Clojure system (section 5.3 presents a case study and empirical re-
sult from this code base).

Example 7(defalias RawKeyPair
"Unencrypted keypair -- extra keys disallowed"
(HMap :mandatory {:public-key RawKey,

:private-key RawKey},
:complete? true))

(defalias EncKeyPair
"Encrypted keypair -- extra keys disallowed"
(HMap :mandatory {:public-key RawKey,

:enc-private-key EncKey},
:complete? true))

(ann enc-keypair [RawKeyPair -> EncKeyPair])
(defn enc-keypair "Encrypt an unencrypted keypair"

[{pk :private-key :as kp}] ; original map is kp
(assoc
; remove unencrypted private key
(dissoc kp :private-key)
; add encrypted private key
:enc-private-key (encrypt pk)))

If we forget to remove the unencrypted private key, a type error
is given, because EncKeyPair is fully specified.

(ann enc-keypair-bad [RawKeyPair -> EncKeyPair])
(defn enc-keypair-bad

[{pk :private-key :as kp}]
(assoc kp :enc-private-key (encrypt pk)))
; Type Error:
; Expected EncKeyPair, given
; (HMap :mandatory {:enc-private-key EncKey
; :private-key RawKey
; :public-key RawKey}
; :complete? true)

The extra :private-key entry does not match EncKeyPair, so a
type error is raised.

2.6 HMaps and multimethods, joined at the hip
Since HMaps are the primary way of specifying the structure of
data in Clojure, and multimethods are the primary tool for dis-
patching on data, they are inevitably linked. There are infinite ways
of both structuring and dispatching on data, so we cannot hope to
merely add a set of special case rules for handling these features.
Instead, as type system designers, we must search for a composi-
tional approach.

Thankfully, occurrence typing, originally designed for reason-
ing about if tests, provides the compositional approach we need.
By extending the system with a handful of rules based on HMaps
and other functions, we can automatically cover both easy cases
and those that compose simple rules in arbitrary ways.

Futhermore, this approach extends to multimethod dispatch—
the primitive branching mechanism works like the humble if con-
ditional. Only a small number of rules are needed to encode the
isa?-based dispatch, themselves made of simple pieces. In prac-
tice, this means that conditional-based control flow typing extends
to multimethod dispatch, and vice-versa.

We first demonstrate a very common, simple dispatch style, then
move on to deeper structural dispatching where occurrence typing’s
compositionality shines.

HMaps and unions Partially specified HMap’s with a common
dispatch key combine naturally with ad-hoc unions. An Order is
one of three kinds of HMaps.

(defalias Order ; define type abbreviation
"A meal order, tracking dessert quantities."
(U ’{:Meal ’:lunch ; keyword singleton type

:desserts Int}
’{:Meal ’:dinner :desserts Int}
’{:Meal ’:combo :meal1 Order :meal2 Order}))

The :Meal entry is common to each HMap, always mapped
to a known keyword singleton type. It’s natural to dispatch on the
class of an instance—it’s similarly natural to dispatch on a known
entry like :Meal.

Example 8
(ann desserts [Order -> Int])
(defmulti desserts "Total desserts per order."

:Meal) ; dispatch on :Meal entry
; destructuring reads backwards, d is :desserts entry
(defmethod desserts :lunch [{d :desserts}] d)
(defmethod desserts :dinner [{d :desserts}] d)
(defmethod desserts :combo [{m1 :meal1 m2 :meal2}]
(+ (desserts m1) (desserts m2)))

(desserts {:Meal :combo
:meal1 {:Meal :lunch :desserts 1}
:meal2 {:Meal :dinner :desserts 2}})

;=> 3

The :combo method is verified to only structurally recur on
Orders. This is achieved because we learn the argument—o—must
be of type ’{:Meal :combo} since (isa? (:Meal o) :combo)
must be true. Combining ’{:Meal :combo} with the fact that o
is an Order eliminates possibility of :lunch and :dinner orders,
simplifying o to

’{:Meal ’:combo :meal1 Order :meal2 Order}

which contains appropriate arguments for both recursive calls.

Nested dispatch An equally valid dispatch mechanism for desserts
would be on the class of the :desserts key. We have already
seen dispatch on class and on keywords in isolation—occurrence

4 2015/7/11

typing automatically understands control flow that combines its
simple building blocks.

In the first method, the dispatch value is the class Long, a
subtype of Int, and the second method has dispatch value nil,
the sentinel value for a failed map lookup. In practice, :lunch
and :dinner meals will dispatch to the Long method, but Typed
Clojure infers a slightly more general type due to the definition of
:combo meals.

Example 9
(ann desserts’ [Order -> Int])
(defmulti desserts’

(fn [o :- Order] (class (:desserts o))))
(defmethod desserts’ Long [{d :desserts :as o}]

; o :- (U ’{:Meal ’:lunch :desserts Int}
; ’{:Meal ’:dinner :desserts Int}
; ’{:Meal ’:combo :desserts Int
; :meal1 Order :meal2 Order})
d)

(defmethod desserts’ nil [{m1 :meal1 m2 :meal2 :as o}]
; o :- ’{:Meal ’:combo :meal1 Order :meal2 Order}
(+ (desserts’ m1) (desserts’ m2)))

In the Long method, Typed Clojure learns that its argument is at
least of type ’{:desserts Long}—since

(isa? (class (:desserts o)) Long)

must be true. In this method, we deduce the entry :desserts must
be a present and mapped to a Long, even in a :combo meal which
does not state :desserts as present or absent.

In the nil method, (isa? (class (:desserts o)) nil)
must be true—which implies (class (:desserts o)) is nil.
Since lookups on missing keys return nil, either

• o has a :desserts entry to nil, like {:desserts nil}, or
• o is missing a :desserts entry, like {}.

Equivalently, we learn o is at least of type

(U ’{:desserts nil}
; :absent-keys, a set of known absent entries
(HMap :absent-keys #{:desserts}))

This eliminates non-:combo meals since their ’{:desserts Int}
type does not agree with this new information (because :desserts
is neither mapped to nil or absent).

From multimethod to multiple dispatch Clojure multimethod
dispatch, and Typed Clojure’s handling of it, goes even further,
supporting dispatch on multiple arguments via vectors. Dispatch
on multiple arguments is beyond the scope of this paper, but the
same intuition applies—adding support for multiple dispatch au-
tomatically allows arbitrary combinations and nestings of it and
previous simple dispatch rules.

3. A Formal Model of λTC
Now that we have demonstrated the core features Typed Clojure
provides, we link them together in a formal model called λTC .
Building on occurrence typing, we incrementally add each novel
feature of Typed Clojure to the formalism, interleaving presentation
of syntax, typing rules, operational semantics, and subtyping.

3.1 Core type system
Our presentation will start with a review of occurrence typ-
ing (Tobin-Hochstadt and Felleisen 2010), the foundation of λTC .

e ::= x | v | (e e) | λxτ .e Expressions
| (if e e e) | (let [x e] e)

v ::= l | n | c | s | [ρ, λxτ .e]c Values
c ::= class | n? Constants

σ, τ ::= > | (
⋃ −→τ) | x:τ

ψ|ψ−−−→
o

τ Types

| (Val l) | C
l ::= k | C | nil | b Value types
b ::= true | false Boolean values

ψ ::= τπ(x) | τπ(x) | ψ ⊃ ψ Propositions
| ψ ∧ ψ | ψ ∨ ψ | tt | ff

o ::= π(x) | ∅ Objects
π ::= −→pe Paths
pe ::= class | keyk Path elements

Γ ::=
−→
ψ Proposition environments

ρ ::= {−−−−→x 7→ v} Value environments

Figure 2. Syntax of Terms, Types, Propositions and Objects

Expressions Syntax is given in Figure 2. Expressions e include
variables x, values v, applications, abstractions, conditionals, and
let expressions. All binding forms introduce fresh variables. Values
include booleans b, nil, class literals C, keywords k, integers n,
constants c, and strings s. Lexical closures [ρ, λxτ .e]c close value
environments ρ over functions, which map bindings to values.

Types Types σ or τ include the top type >, untagged unions
(
⋃ −→τ), singletons (Val l), and class instances C. We abbreviate

the classes Boolean to B, Keyword to K, Nat to N, String to S, and
File to F. We also abbreviate the types (

⋃
) to ⊥, (Val nil) to nil,

(Val true) to true, and (Val false) to false. The difference between
the types (Val K) and K is subtle. The former is inhabited by the
class literal K and the result of (class :a)—the latter by keywords

like :a. Function types x:σ
ψ|ψ−−→
o

τ contain latent (terminology

from (Lucassen and Gifford 1988)) propositions ψ, object o, and
return type τ, which may refer to the function argument x. They are
instantiated with the actual object of the argument in applications.

Objects To reason about nested expressions, each expression is
associated with a symbolic representation called an object. For
example, variable m has object m; (class (:lunch m)) has object
class(key:lunch(m)); and 42 has the empty object ∅. Figure 2 gives
the syntax for objects o—non-empty objects π(x) combine of
a root variable x and a path π, which consists of a possibly-
empty sequence of path elements (pe) applied right-to-left from
the root variable. We use two path elements—class and keyk—
representing the results of calling class and of looking up a keyword
k respectively.

Propositions with a logical system In standard type systems, type
environments track variables.

LC-LET
Γ ` e1 : σ Γ, x 7→ σ ` e2 : τ

Γ ` (let [x e1] e2) : τ

LC-LOCAL
Γ(x) = τ

Γ ` x : τ

Occurrence typing instead pairs logical formulas, that can rea-
son about arbitrary non-empty objects, with a proof system. The
logical statement σx says variable x is of type σ.

T0-LET
Γ ` e1 : σ Γ, σx ` e2 : τ

Γ ` (let [x e1] e2) : τ

T0-LOCAL
Γ ` τx

Γ ` x : τ

In T0-Local, Γ ` τπ(x) appeals to the proof system to solve τ.
We further extend logical statements to propositional logic. Fig-

ure 2 describes the syntax for propositions ψ, consisting of positive

5 2015/7/11

δτ(class) = x:> tt|tt−−−−→
class(x)

(
⋃

nil Class)

δτ(n?) = x:>
N x |N x−−−−−→
∅

B

Figure 4. Constant typing

and negative type propositions about non-empty objects—τπ(x)
and τπ(x) respectively—the latter pronounced “the object π(x) is
not of type τ”. The other propositions are standard logical connec-
tives: implications, conjunctions, disjunctions, and the trivial (tt)
and impossible (ff) propositions. The full proof system judgement

Γ ` ψ
says proposition environment Γ proves proposition ψ.

Each expression is associated with two propositions—when ex-
pression e1 is in test position like (if e1 e2 e3), the type system
extracts e1’s ‘then’ and ‘else’ proposition to check e2 and e3 re-
spectively. For example, in (if o e2 e3) we learn variable o is true
in e2 via o’s ‘then’ proposition (∪ nil false) o, and that o is false in
e3 via o’s ‘else’ proposition (∪ nil false) o.

To illustrate, recall Example 8. We know the parameter o is
of type Order, written Ordero as a proposition. In checking the
:combo method, we also assume (:Meal o) is :combo, based on
multimethod dispatch rules. This is written (Val :combo)key:Meal(o)

,
pronounced “the :Meal path of variable o is of type (Val :combo)”.

To attain the type of o, we must solve for τ in Γ ` τo, un-
der proposition environment Γ = Ordero, (Val :combo)key:Meal(o)

which deduces τ to be a :combo meal. The logical system com-
bines pieces of type information to deduce more accurate types for
lexical bindings—this is explained in Section 3.6.

The full judgment We formalize our type system following Tobin-
Hochstadt and Felleisen (2010). The typing judgment

Γ ` e ⇒ e′ : τ ; ψ+|ψ− ; o

says expression e rewrites to e′, which is of type τ in the proposi-
tion environment Γ, with ‘then’ proposition ψ+, ‘else’ proposition
ψ− and object o.

We write Γ ` e ⇒ e′ : τ to mean Γ ` e ⇒ e′ : τ ; ψ′+|ψ′− ; o′

for someψ′+,ψ′− and o′, and abbreviate self rewriting judgements
Γ ` e ⇒ e : τ ; ψ+|ψ− ; o to Γ ` e : τ ; ψ+|ψ− ; o.

Typing rules The core typing rules are given as Figure 3. We in-
troduce the interesting rules with the complement number predicate
as a running example.

λd>.(if (n? d) false true) (1)

The lambda rule T-Abs introduces σx = >d to check the body.
With Γ = >d, the T-If rule first checks the test e1 = (n? d) via the
T-App rule, with three main steps.

First, in T-App the operator e = n? is checked with T-Const,
which uses δτ (Figure 4, dynamic semantics in the supplemental
material) to type constants. n? is a predicate over numbers, and
class returns its argument’s class.

Resuming (n? d), in T-App the operand e′ = d is checked with
T-Local as

Γ ` d :> ; (∪ nil false)d|(∪ nil false)d ; d (2)

which encodes the type, proposition, and object information about
variables as previously discussed.

Finally, the T-App rule substitutes the operand’s object o′ for
the parameter x in the latent type, propositions, and object.

Γ ` (n? d) : B ; N d|N d ; ∅ (3)

S-REFL
` τ <: τ

S-TOP
` τ <:>

S-UNIONSUPER
∃i. ` τ <: σi

` τ <: (
⋃ −→σ i)

S-UNIONSUB
−−−−−−→
` τi <: σ

i

` (
⋃ −→τ i)<: σ

S-FUNMONO

` x:σ
ψ+|ψ−−−−−−→

o
τ <: Fn

S-OBJECT
` C <: Object

S-SCLASS
` (ValC)<: Class

S-SBOOL
` (Val b)<: B

S-SKW
` (Val k)<: K

S-FUN
` σ′ <: σ ` τ <: τ ′ ψ+ ` ψ′+

ψ− ` ψ′− ` o <: o′

` x:σ
ψ+|ψ−−−−−−→

o
τ <: x:σ′

ψ′+|ψ
′
−−−−−−−→

o′
τ ′

Figure 5. Core subtyping rules

To demonstrate, the ‘then’ proposition—in T-App ψ+[o′/x]—
substitutes the latent ‘then’ proposition of δτ(n?) with d, giving
N x [d/x] = N d.

To check the branches of (if (n? d) false true), T-If introduces
ψ1+ = N d to check e2 = false, and ψ1− = N d to check e3 = true.
The branches are first checked with T-False and T-True respec-
tively, then T-Subsume.

Γ,N d ` false : B ; N d|N d ; ∅
Γ,N d ` true : B ; N d|N d ; ∅

The T-Subsume premises Γ, ψ+ ` ψ′+ and Γ, ψ− ` ψ′− allow us
to pick compatible propositions for both branches.

Finally T-Abs concludes, using the T-If outputs, with

` λd>.(if (n? d) false true) : d:> N d|N d−−−−−→
∅

B ; tt|ff ; ∅

Subtyping Figure 5 presents subtyping as a reflexive and transi-
tive relation with top type >. Singleton types are instances of their
respective classes—boolean singleton types are of type B, class lit-
erals are instances of Class and keywords are instances of K. In-
stances of classes C are subtypes of Object. Function types are
subtypes of Fn. All types except for nil are subtypes of Object, so
> is similar to (

⋃
nil Object). Function subtyping is contravari-

ant left of the arrow—latent propositions, object and result type are
covariant. Subtyping for untagged unions is standard.

Operational semantics We define the dynamic semantics for
λTC in a big-step style using an environment, following Tobin-
Hochstadt and Felleisen (2010). We include both errors and a
wrong value, which is provably ruled out by the type system.
The main judgment is ρ ` e ⇓ α which states that e evaluates to
answer α in environment ρ. We chose to omit the core rules (see
Figure A.14) however a notable difference is nil is a false value,
which affects the semantics of if:

B-IFTRUE
ρ ` e1 ⇓ v1

v1 6= false v1 6= nil
ρ ` e2 ⇓ v

ρ ` (if e1 e2 e3) ⇓ v

B-IFFALSE
ρ ` e1 ⇓ false or ρ ` e1 ⇓ nil

ρ ` e3 ⇓ v
ρ ` (if e1 e2 e3) ⇓ v

3.2 Java Interoperability
We present Java interoperability in a restricted setting without class
inheritance, overloading or Java Generics.

We extend the syntax in Figure 6 with Java field lookups and
calls to methods and constructors. To prevent ambiguity, field ac-
cesses are written (. e fld) and method calls (. e (mth−→e)).

6 2015/7/11

T-LOCAL
Γ ` τx

σ = (∪ nil false)
Γ ` x : τ ; σx |σx ; x

T-IF
Γ ` e1 ⇒ e′1 : τ1 ; ψ1+|ψ1− ; o1

Γ, ψ1+ ` e2 ⇒ e′2 : τ ; ψ+|ψ− ; o
Γ, ψ1− ` e3 ⇒ e′3 : τ ; ψ+|ψ− ; o

e′ = (if e′1 e
′
2 e
′
3)

Γ ` (if e1 e2 e3)⇒ e′ : τ ; ψ+|ψ− ; o

T-ABS
Γ, σx ` e ⇒ e′ : σ′ ; ψ+|ψ− ; o

τ = x:σ
ψ+|ψ−−−−−−→

o
σ′

Γ ` λxσ .e ⇒ λxσ .e′ : τ ; tt|ff ; ∅

T-NIL
Γ ` nil : nil ; ff |tt ; ∅

T-FALSE
Γ ` false : false ; ff |tt ; ∅

T-LET
Γ ` e1 ⇒ e′1 : σ ; ψ1+|ψ1− ; o1
ψ′ = (∪ nil false) x ⊃ ψ1+
ψ′′ = (∪ nil false) x ⊃ ψ1−

Γ, σx , ψ
′, ψ′′ ` e2 ⇒ e′2 : τ ; ψ+|ψ− ; o
e′ = (let [x e′1] e′2)

Γ ` (let [x e1] e2)⇒ e′ : τ[o1/x] ; ψ+|ψ−[o1/x] ; o[o1/x]

T-APP

Γ ` e ⇒ e1 : x:σ
ψf+

|ψf−−−−−−−−→
of

τ ; ψ+|ψ− ; o

Γ ` e′ ⇒ e′1 : σ ; ψ′+|ψ
′
− ; o′

Γ ` (e e′)⇒ (e1 e
′
1) : τ[o′/x] ; ψf+|ψf−[o′/x] ; of [o′/x]

T-NUM
Γ ` n : N ; tt|ff ; ∅

T-CONST
Γ ` c : δτ (c) ; tt|ff ; ∅

T-KW
Γ ` k : (Val k) ; tt|ff ; ∅

T-NUM
Γ ` n : N ; tt|ff ; ∅

T-CLASS
Γ ` C : (ValC) ; tt|ff ; ∅

T-SUBSUME
Γ ` e ⇒ e′ : τ ; ψ+|ψ− ; o

Γ, ψ+ ` ψ′+ Γ, ψ− ` ψ′−
` τ <: τ ′ ` o <: o′

Γ ` e ⇒ e′ : τ ′ ; ψ′+|ψ
′
− ; o′

T-STR
Γ ` s : S ; tt|ff ; ∅

T-TRUE
Γ ` true : true ; tt|ff ; ∅

Figure 3. Core typing rules

Example 1 (.getParent (new File "a/b")) translates to

(. (new F “a/b”) (getParent)) (4)

But both the constructor and method are unresolved. We intro-
duce non-reflective expressions for specifying exact Java overloads.

(. (new
[S]

F “a/b”) (getParentF
[[],S]

)) (5)

From the left, the one-argument constructor for F takes a S, and the
getParent method of F takes zero arguments and returns a S.

We now walk through the conversion from unresolved expres-
sion 4 to resolved expression 5.

Constructors First we check and convert (new F “a/b”) to
(new

[S]
F “a/b”). The T-New typing rule checks and rewrites

constructors. To check (new F “a/b”) we first resolve the con-
structor overload in the class table—there is at most one to sim-
plify presentation. With C1 = S, we convert to a nilable type the
argument with τ1 = (

⋃
nil S) and type check “a/b” against τ1.

Typed Clojure defaults to allowing non-nilable arguments, but this
can be overridden, so we model the more general case. The return
Java type F is converted to a non-nil Typed Clojure type τ = F for
the return type, and the propositions say constructors can never be
false—constructors can never produce the internal boolean value
that Clojure uses for false, or nil. Finally, the constructor rewrites
to (new

[S]
F “a/b”).

Methods Next we convert (. (new
[S]

F “a/b”) (getParent))

to (. (new
[S]

F “a/b”) (getParentF
[[],S]

)). We use T-Method to
check (. (new

[S]
F “a/b”) (getParent)), which checks unre-

solved methods. We verify the target type σ = F is non-nil before
erasing nil by converting to a Java type C1 = F. The specific over-
load is chosen from the class table based on C1—there is at most
one. Then (new

[S]
F “a/b”) is checked against a nilable conver-

sion of C1, τ1 = (
⋃

nil F), which succeeds by the previous rule.
The nilable return type τ = (

⋃
nil S) is given, and—finally—the

entire expression rewrites to expression 5.
The T-Field rule is included in Figure 6, and is like T-Method,

but without arguments.

The evaluation rules B-Field, B-New and B-Method (Figure 6)
simply evaluate their arguments and call the relevant JVM opera-
tion, which we do not model—Section 4 states our exact assump-
tions. There are no evaluation rules for reflective Java interoperabil-
ity, since there are no typing rules that rewrite to reflective calls.

3.3 Multimethod preliminaries: isa?
We now consider the isa? operation, a core part of the dispatch
mechanism for multimethods. Recalling the Section 2.4 examples,
isa? is a subclassing test for classes, otherwise an equality test.
The key component of the T-IsA rule (Figure 7) is the IsAProps
metafunction, used to calculate the propositions for isa? tests.

As an example, (isa? (class x) K) has the true and false proposi-
tions IsAProps(class(x), (Val K)) = Kx |Kx , meaning that if this
expression produces true, x is a keyword, otherwise it is not.

The operational behavior of isa? is given by B-IsA (Figure 7).
IsA explicitly handles classes in the second case.

3.4 Multimethods
Figure 7 presents immutable multimethods without default methods
to ease presentation. Below is the translation of Example 4 to λTC .

(let [hi0 (defmulti x: K tt|tt−−−→
∅

S λxK.x)]

(let [hi1 (defmethod hi0 :en λxK.“hello”)]

(let [hi2 (defmethod hi1 :fr λxK.“bonjour”)]
(hi2 :en))))

We now show to check (defmulti x: K −→ S λxK.x). The
expression (defmulti σ e) creates a multimethod with interface
type σ, and dispatch function e of type σ′ , producing a value of
type (Multi σ σ′). The T-DefMulti typing rule simply checks the
dispatch function, and verifies both the interface and dispatch type’s
domain agree. Our example checks with τ = K, interface type σ =

x: K −→ S, dispatch function type σ′ = x: K tt|tt−−−→
x

K, and overall

type (Multix: K −→ S x: K tt|tt−−−→
x

K).

7 2015/7/11

e ::= . . . (. e fld) | (. e (mth−→e)) Expressions
| (new C−→e)

| (. e (mthC
[[
−→
C],C]

−→e)) Non-reflective Expressions

| (. e fldCC) | (new
[
−→
C]
C −→e)

v ::= . . . | C {
−−−−→
fld : v} Values

ce ::= {m 7→ {
−−−−−−−−−−−→
mth 7→ [[

−→
C], C]}, Class descriptors

f 7→ {
−−−−−−→
fld 7→ C},

c 7→ {[
−→
C]}}

CT ::= {
−−−−−→
C 7→ ce} Class Table

T-NEW

[
−→
Ci] ∈ CT [C][c]

−−−−−−−−−−→
JTnil(Ci) = τi

−−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi JT(C) = τ

Γ ` (new C−→ei)⇒ (new
[
−→
Ci]

C
−→
e′i) : τ ; tt|ff ; ∅

T-METHOD
Γ ` e ⇒ e′ : σ ` σ <: Object

TJ(σ) = C1 mth 7→ [[
−→
Ci], C2] ∈ CT [C1][m]

−−−−−−−−−−→
JTnil(Ci) = τi

−−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi JTnil(C2) = τ

Γ ` (. e (mth−→ei))⇒ (. e′ (mthC1

[[
−→
Ci],C2]

−→
e′i)) : τ ; tt|tt ; ∅

T-FIELD
Γ ` e ⇒ e′ : σ ` σ <: Object

TJ(σ) = C1 fld 7→ C2 ∈ CT [C1][f] JTnil(C2) = τ

Γ ` (. e fld)⇒ (. e′ fldC1
C2

) : τ ; tt|tt ; ∅

JTnil(Void) = nil
JTnil(C) = (

⋃
nil C)

JT(Void) = nil
JT(C) = C

TJ(τ) = C if ` τ <: JTnil(C)

B-FIELD
ρ ` e ⇓ v

JVMgetstatic[C1, v1, f ld, C2] = v

ρ ` (. e fldC1
C2

) ⇓ v

B-NEW −−−−−−−→
ρ ` ei ⇓ vi

JVMnew[C1, [
−→
Ci], [

−→vi]] = v

ρ ` (new
[
−→
Ci]

C −→ei) ⇓ v

B-METHOD

ρ ` em ⇓ vm
−−−−−−−−→
ρ ` ea ⇓ va

JVMinvokestatic[C1, vm,mth, [
−→
Ca], [−→va], C2] = v

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→ea)) ⇓ v

Figure 6. Java Interoperability Syntax, Typing and Operational
Semantics

Next, show how to check (defmethod hi0 :en λxK.“hello”).
The expression (defmethod em ev ef) creates a new multimethod
that extends multimethod em’s dispatch table, mapping dispatch
value ev to method ef . The T-DefMulti typing rule checks em is a
multimethod with dispatch function type τd, then calculates the ex-
tra information we know based on the current dispatch value ψ′′+,
which is assumed when checking the method body. Our example

checks with em being of type (Multix: K −→ S x: K tt|tt−−−→
x

K)

with o′ = x and τv = (Val :en). Then ψ′′+ = (Val :en)x by
IsAProps(x, (Val :en)) = (Val :en)x |(Val :en)x . Since τ = K, we
check the method body with Kx , (Val :en)x ` “hello” : S ; tt|tt ; ∅.
Finally from the interface type τm, we know ψ+ = ψ− = tt, and o
= ∅, which also agrees with the method body, above.

Subtyping Multimethods are also functions, which is encoded
via S-PMultiFn. This rule says a multimethod can be upcast to its

e ::= . . . | (defmulti τ e) Expressions
| (defmethod e e e) | (isa? e e)

v ::= . . . | [v, t]m Values
t ::= {−−−→v 7→ v} Dispatch tables

σ, τ ::= . . . | (Multi τ τ) Types

T-DEFMULTI

σ = x:τ
ψ+|ψ−−−−−−→

o
τ ′

σ′ = x:τ
ψ′+|ψ

′
−−−−−−−→

o′
τ ′′ Γ ` e ⇒ e′ : σ′

Γ ` (defmulti σ e)⇒ (defmulti σ e′) : (Multiσ σ′) ; tt|ff ; ∅

T-DEFMETHOD

τm = x:τ
ψ+|ψ−−−−−−→

o
σ τd = x:τ

ψ′
+
|ψ′−−−−−−−→
o′

σ′

Γ ` em ⇒ e′m : (Multi τm τd)
Γ ` ev ⇒ e′v : τv IsAProps(o′, τv) = ψ′′+|ψ

′′
−

Γ, τx , ψ
′′
+ ` eb ⇒ e′b : σ ; ψ+|ψ− ; o

e′ = (defmethod e′m e′v λx
τ .e′b)

Γ ` (defmethod em ev λx
τ .eb)⇒ e′ : (Multi τm τd) ; tt|ff ; ∅

T-ISA
Γ ` e ⇒ e1 : σ ; ψ′+|ψ

′
− ; o

Γ ` e′ ⇒ e′1 : τ IsAProps(o, τ) = ψ+|ψ−
Γ ` (isa? e e′)⇒ (isa? e1 e

′
1) : B ; ψ+|ψ− ; ∅

IsAProps(class(π(x)), (ValC)) = Cπ(x)|Cπ(x)
IsAProps(o, (Val l)) = ((Val l)x |(Val l)x)[o/x]

if l 6= C
IsAProps(o, τ) = tt|tt otherwise

S-PMULTIFN

` σt <: x:σ
ψ+|ψ−−−−−−→

o
τ

` σd <: x:σ
ψ′

+
|ψ′−−−−−−−→
o′

τ ′

` (Multiσt σd)<: x:σ
ψ+|ψ−−−−−−→

o
τ

S-PMULTI
` σ <: σ′ ` τ <: τ ′

` (Multiσ τ)<: (Multiσ′ τ ′)

S-MULTIMONO

` (Multix:σ
ψ+|ψ−−−−−−→

o
τ x:σ

ψ′
+
|ψ′−−−−−−−→
o′

τ ′)<: Multi

B-DEFMETHOD
ρ ` e ⇓ [vd, t]m
ρ ` e′ ⇓ vv
ρ ` ef ⇓ vf

v = [vd, t[vv 7→ vf]]m

ρ ` (defmethod e e′ ef) ⇓ v

B-DEFMULTI
ρ ` e ⇓ vd
v = [vd, {}]m

ρ ` (defmulti τ e) ⇓ v

GM(t, ve) = vf if −→vfs = {vf}
where −→vfs = {vf |vk 7→ vf ∈ t and IsA(ve, vk) = true}

GM(t, ve) = err otherwise

B-ISA
ρ ` e1 ⇓ v1
ρ ` e2 ⇓ v2

IsA(v1, v2) = v

ρ ` (isa? e1 e2) ⇓ v

IsA(v, v) = true v 6= C
IsA(C,C′) = true ` C <: C′

IsA(v, v′) = false otherwise

Figure 7. Multimethod Syntax, Typing and Operational Semantics

interface type. This means multimethod call sites can be handled
by T-App via T-Subsume. Other rules are given in in Figure 7.

Semantics Multimethod definition semantics are also given in
Figure 7. B-DefMulti creates a multimethod with the given dispatch

8 2015/7/11

e ::= . . . | (get e e) | (assoc e e e) Expressions
v ::= . . . | {} Values
τ ::= . . . | (HMapEMA) Types
M ::= {

−−−→
k 7→ τ} HMap mandatory entries

A ::= {
−→
k } HMap absent entries

E ::= C | P HMap completeness tags

T-GETHMAP

Γ ` e ⇒ e′ : (
⋃ −−−−−−−−−−→

(HMapEMA)
i

) ; ψ1+|ψ1− ; o

Γ ` ek ⇒ e′k : (Val k)
−−−−−−→
M[k] = τ

i

Γ ` (get e ek)⇒ (get e′ e′k) : (
⋃ −→τ i) ; tt|tt ; keyk(x)[o/x]

T-GETHMAPABSENT
Γ ` e ⇒ e′ : (HMapEMA) ; ψ1+|ψ1− ; o

Γ ` ek ⇒ e′k : (Val k) k ∈ A
Γ ` (get e ek)⇒ (get e′ e′k) : nil ; tt|tt ; keyk(x)[o/x]

T-GETHMAPPARTIALDEFAULT
Γ ` e ⇒ e′ : (HMapPMA) ; ψ1+|ψ1− ; o

Γ ` ek ⇒ e′k : (Val k) k 6∈ dom(M) k 6∈ A
Γ ` (get e ek)⇒ (get e′ e′k) :> ; tt|tt ; keyk(x)[o/x]

T-ASSOCHMAP
Γ ` e ⇒ e′ : (HMapEMA) Γ ` ek ⇒ e′k : (Val k)
Γ ` ev ⇒ e′v : τ k 6∈ A e′ = (assoc e′ e′k e

′
v)

Γ ` (assoc e ek ev)⇒ e′ : (HMapEM[k 7→ τ]A) ; tt|ff ; ∅
S-HMAP
∀i.M[ki] = σi and ` σi <: τi A1 ⊇ A2

` (HMapEMA1)<: (HMapE {
−−−→
k 7→ τ}

i
A2)

S-HMAPP
∀i.M[ki] = σi and ` σi <: τi

` (HMapCMA′)<: (HMapP {
−−−→
k 7→ τ}

i
A)

S-HMAPMONO
` (HMapEMA)<: Map

B-ASSOC
ρ ` e ⇓ m
ρ ` ek ⇓ k
ρ ` ev ⇓ vv

v = m[k 7→ vv]

ρ ` (assoc e ek ev) ⇓ v

B-GET
ρ ` e ⇓ m
ρ ` e′ ⇓ k
k ∈ dom(m)
m[k] = v

ρ ` (get e e′) ⇓ v

B-GETMISSING
ρ ` e ⇓ m
ρ ` e′ ⇓ k
k 6∈ dom(m)

ρ ` (get e e′) ⇓ nil

Figure 8. HMap Syntax, Typing and Operational Semantics

function and an empty dispatch table. B-DefMethod produces a
new multimethod with an extended dispatch table.

The overall dispatch mechanism is summarised by B-BetaMulti.
B-BETAMULTI

ρ ` e ⇓ [vd, t]m ρ ` e′ ⇓ v′
ρ ` (vd v

′) ⇓ ve GM(t, ve) = vf ρ ` (vf v
′) ⇓ v

ρ ` (e e′) ⇓ v

First the dispatch function vd is applied to the argument v′ to obtain
the dispatch value ve. Based on ve, the GM metafunction (Figure 7)
extracts a method vf from the method table t and applies it to the
original argument for the final result.

3.5 Precise Types for Heterogeneous maps
Figure 8 presents heterogeneous map types. The partially specified
map of lunch in Example 6 is written

(HMapP{(Val :en) S, (Val :fr) S} {})

We abbreviate this type as Lu in this section. The type (HMapEMA)
containsM, a map of present entries (mapping keywords to types),
A, a set of keyword keys that are known to be absent and tag E

which is either C (“complete”) if the map is fully specified byM,
and P (“partial”) if there are unknown entries.

The type of the fully specified map breakfast in Example 5
elides the absent entries, written

(HMapC{(Val :en) S, (Val :fr) S})

We abbreviate this type as Bf in this section. To ease presentation,
if an HMap has completeness tag C then A implicitly contains all
keywords not in the domain of M. Keys cannot be both present
and absent.

The metavariable m ranges over the runtime value of maps
{
−−−−→
k 7→ v}, usually written {

−→
k v}. We only provide syntax for the

empty map literal, however when convenient we abbreviate non-
empty map literals to be a series of assoc operations on the empty
map. We restrict lookup and extension to keyword keys.

How to check A mandatory lookup is checked by T-GetHMap.

λbBf.(get b :en)

The result type is S, and the return object is key:en(b). The object
keyk(x)[o/x] is a symbolic representation for a keyword lookup
of k in o. The substitution for x handles the case where o is empty.

keyk(x)[y/x] = keyk(y)
keyk(x)[∅/x] = ∅

An absent lookup is checked by T-GetHMapAbsent.

λbBf.(get b :bocce)

The result type is nil, and the return object is key:bocce(b).
A lookup of a key that is neither present or absent is checked by

T-GetHMapPartialDefault.

λuLu.(get u :bocce)

The result type is >, and the return object is key:bocce(u). Notice
the propositions attached to each get rule are trivial—propositions
are erased once they enter a HMap type.

For presentational reasons, lookups on unions of HMaps are
only supported in T-GetHMap. Furthermore, each element of the
union must contain the key we are looking up.

λu(
⋃

Bf Lu).(get u :en)

The result type is S, and the return object is key:en(u). However,
lookups on :bocce on (

⋃
Bf Lu) maps are unsupported. This re-

striction still allows us to check many of the examples in Sec-
tion 2—in particular we can check Example 8, as :Meal is in com-
mon with both HMaps, but cannot check Example 9 because a
:combo meal lacks a :desserts entry.

Extending a map with T-AssocHMap preserves its complete-
ness.

λbBf.(assoc b :au “beans”)

The result type is (HMapC{(Val :en) S, (Val :fr) S, (Val :au) S}),
which is complete, like its input. T-AssocHMap also enforces k 6∈
A to prevent badly formed types.

Subtyping Subtyping for HMaps designate Map as a common
supertype for all HMaps. S-HMap says that an HMap is a subtype
of another HMap if they agree on E, agree on mandatory entries
with subtyping and at least cover the absent keys of the supertype.
Complete maps are subtypes of partial maps as long as they agree
on the mandatory entries of the partial map via subtyping (S-
HMapP).

The semantics for get and assoc are straightforward. If the entry
is missing, B-GetMissing produces nil.

9 2015/7/11

update((
⋃ −→τ), ν, π) = (

⋃ −−−−−−−−−−→
update(τ, ν, π))

update(τ, (ValC), π :: class) = update(τ, C, π)
update(τ, ν, π :: class) = τ
update((HMapEMA), ν, π :: keyk) = (HMapEM[k 7→ update(τ, ν, π)] A) ifM[k] = τ

update((HMapEMA), ν, π :: keyk) = ⊥ if ` nil 6<: ν and k ∈ A
update((HMapPMA), τ, π :: keyk) = (∪ (HMapPM[k 7→ τ] A) if ` nil <: τ, k 6∈ dom(M) and k 6∈ A

(HMapPM (A ∪ {k})))
update((HMapPMA), ν, π :: keyk) = (HMapPM[k 7→ update(>, ν, π)] A) if ` nil 6<: ν, k 6∈ dom(M) and k 6∈ A
update(τ, ν, π :: keyk) = τ
update(τ, σ, ε) = restrict(τ, σ)
update(τ, σ, ε) = remove(τ, σ)

restrict(τ, σ) = ⊥ if 6 ∃v. ` v : τ ; ψ ; o and ` v : σ ; ψ′ ; o′

restrict(τ, σ) = τ if ` τ <: σ
restrict(τ, σ) = σ otherwise

remove(τ, σ) = ⊥ if ` τ <: σ
remove(τ, σ) = τ otherwise

Figure 9. Type update (the metavariable ν ranges over τ and τ (without variables), ` nil 6<: τ when ` nil <: τ)

L-UPDATE
Γ ` τπ′(x) Γ ` νπ(π′(x))

Γ ` update(τ, ν, π)π′(x)

Figure 10. Proof system update rule (full rules Figure A.20)

3.6 Proof system
The proof system for occurrence typing uses standard propositional
logic, except for where nested information is combined. This is
handled by the L-Update rule (Figure 10)—it says under Γ, if
object π′(x) is of type τ, and an extension π(π′(x)) is of possibly-
negative type ν, then update (τ, ν, π) is π′(x)’s type under Γ.

Recall Example 8. Solving Ordero, (Val :combo)key:Meal(o)
` τo

uses L-Update, where π = ε and π′ = [key:Meal].

Γ ` update(Order, (Val :combo), [key:Meal])o

Since Order is a union of HMaps, we structurally recur on the first
case of update (Figure 9), which preserves π. Each initial recursion
hits the first HMap case, since there is some τ such thatM[k] = τ
and E accepts partial maps P.

To demonstrate, :lunch meals hit the first HMap case and
update to (HMapPM[(Val :Meal) 7→ σ′] {}) where σ′ =
update ((Val :lunch), (Val :combo), ε) andM = {(Val :Meal) 7→
(Val :lunch), (Val :desserts) 7→ N }. σ′ updates to⊥ via the penul-
timate update case, because restrict ((Val :lunch), (Val :combo))
= ⊥ by the first restrict case. The same happens to :dinner meals,
leaving just the :combo HMap.

In Example 9, Γ ` update(Order,Long, [class, key:desserts])o
updates the argument in the Long method. This recurs twice for
each meal to handle the class path element.

We describe the other update cases. The first class case updates
to C if class returns (ValC). The second keyk case detects con-
tradictions in absent keys. The third keyk case updates unknown
entries to be mapped to τ or absent. The fourth keyk case updates
unknown entries to be present when they do not overlap with nil.

4. Metatheory
We prove type soundness following Tobin-Hochstadt and Felleisen
(2010). Our model is extended to include errors and a wrong
value, and we prove well-typed programs do not go wrong; this is
therefore a stronger theorem than proved by Tobin-Hochstadt and
Felleisen (2010).

Rather than modeling Java’s dynamic semantics, a task of
daunting complexity, we instead make our assumptions about Java
explicit. We concede that method and constructor calls may di-
verge or error, but assume they can never go wrong. (Assumptions
for other operations are given in the supplemental material).

Assumption 1 (JVMnew). If ∀i. vi = Ci {
−−−−−→
fldj : vj} or vi = nil

and vi is consistent with ρ then either

• JVMnew[C, [
−→
Ci], [

−→vi]] = C {
−−−−−→
fldk : vk}which is consistent with ρ,

• JVMnew[C, [
−→
Ci], [

−→vi]] = err, or
• JVMnew[C, [

−→
Ci], [

−→vi]] is undefined.

For the purposes of our soundness proof, we require that all
values are consistent. Consistency (defined in the supplemental
material) states that the types of closures are well-scoped—they
do not claim propositions about variables hidden in their closures.

Our main lemma says if there is a defined reduction, then
the propositions, object and type are correct. The metavariable α
ranges over v, err and wrong.

Lemma 1. If Γ ` e′ ⇒ e : τ ; ψ+|ψ− ; o, ρ |= Γ, ρ is consistent,
and ρ ` e ⇓ α then either

• ρ ` e ⇓ v and all of the following hold:
1. either o = ∅ or ρ(o) = v,
2. either TrueVal(v) and ρ |= ψ+ or FalseVal(v) and ρ |=
ψ−,

3. ` v ⇒ v : τ ; ψ′+|ψ′− ; o′ for some ψ′+, ψ′− and o′, and
4. v is consistent with ρ, or

• ρ ` e ⇓ err.

Proof. By induction on the derivation of ρ ` e ⇓ α. (Full proof
given as lemma A.8).

We can now state our soundness theorems.

Theorem 1 (Type soundness). If Γ ` e′ ⇒ e : τ ; ψ+|ψ− ; o and
ρ ` e ⇓ v then ` v ⇒ v : τ ; ψ′+|ψ′− ; o′ for some ψ′+, ψ′−
and o′

Theorem 2 (Well-typed programs don’t go wrong).
If ` e′ ⇒ e : τ ; ψ+|ψ− ; o then 6` e ⇓ wrong.

5. Experience
Typed Clojure is implemented as a Clojure library—core.typed.
In contrast to Racket, Clojure does not provide extension points to

10 2015/7/11

(ann clojure.core/swap!
(All [w r b ...]
[(Atom2 w r) [r b ... b -> w] b ... b -> w]))

(swap! (atom :- Num 1) + 2 3);=> 6 (atom contains 6)

Figure 11. Type annotation and example call of swap!

the macroexpander. To satisfy our goals of providing Typed Clo-
jure as a library that works with the latest version of the Clojure
compiler, core.typed is implemented as an external static analy-
sis pass that must be explicitly invoked by the programmer, and not
as an integral part of the Clojure compilation process.

This means that type checking is truly optional. On the positive
side, core.typed is flexible to the needs of a dynamically typed
programmer, encouraging experimentation with programs that may
not type check. On the negative side, programmers must remember
to type check their namespaces. Also, programs cannot depend
on Typed Clojure’s typs, meaning that type-based optimisation is
impossible.

5.1 Further Extensions
In addition to the key features we present in this paper, core.typed
supports other extensions to handle additional Clojure features.

Datatypes, Records and Protocols Clojure features datatypes
and protocols. Datatypes are Java classes declared final with public
final fields. They can implement Java interfaces or protocols, which
are similar to interfaces but already-defined classes and nil may
extend protocols. Typed Clojure can reason about most of these
features, including the ability to define polymorphic datatypes and
protocols and utilising the Java type system to help check imple-
mented interface methods.

Mutation and Polymorphism Clojure supports mutable refer-
ences with software-transactional-memory which Typed Clojure
defines bivariantly—with write and read type parameters as in
the atomic reference (Atom2 Int Int) which can write and read
Int. Typed Clojure also supports parametric polymorphism, in-
cluding Typed Racket’s variable-arity polymorphism (Strickland
et al. 2009), which enables us to assign a type to functions like
swap! (Figure 11), which takes a mutable atom, a function and ex-
tra arguments, and swaps into the atom the result of applying the
function to the atom’s current value and the extra arguments.

5.2 Limitations
Java Arrays Java arrays are known to be statically unsound. Bracha
et al. (1998) summarises the approach taken to regain runtime
soundness, which involves checking array writes at runtime.

Typed Clojure implements an experimental partial solution,
making arrays bivariant, separating the write and read types into
contravariant and covariant parameters. If the array originates from
typed code, then we may track the write and read parameters stati-
cally. Currently arrays from foreign sources have their write param-
eter set to to ⊥, protecting typed code from writing something of
incorrect type. However there are currently no casting mechanisms
to convince Typed Clojure the foreign array is writeable.

Array-backed sequences Typed Clojure assumes sequences are
immutable. This is almost always true, however for performance
reasons, sequences created from Java arrays (and Iterables) reflect
future writes to the array in the ‘immutable’ sequence. While dis-
turbing and a clear unsoundness in Typed Clojure, this has not yet
been an issue in practice and is strongly discouraged as undefined
behavior: “Robust programs should not mutate arrays or Iterables
that have seqs on them.” (Hickey 2015).

Typed-untyped interoperation Currently, interactions between
typed and untyped Clojure code are unchecked which can vio-
late the expectations of Typed Clojure. Gradual typing (Tobin-
Hochstadt and Felleisen 2006; Siek and Taha 2006) ensures sound
interoperability between typed and untyped code by enforcing in-
variants of the type system via run-time contracts. We hope to add
support for gradual typing in the future.

5.3 Evaluation
Throughout this paper, we have focused on three interrelated type
system features: heterogenous maps, Java interoperability, and mul-
timethods. Our hypothesis is that these features are widely used in
existing Clojure programs, in interconnecting way, and that han-
dling them as we have done is required to type check realistic Clo-
jure programs.

To evaluate this hypothesis, we analyzed two existing Typed
Clojure code bases, one from the open-source community, and one
from a company that uses Typed Clojure in production. For our
data gathering, we instrumented the Typed Clojure type checker to
record how often various features were used.

feeds2imap feeds2imap is an open source library written in
Typed Clojure. It provides an RSS reader using the java.mail
framework.

Of 11 typed namespaces containing 825 lines of code, there
are 32 Java interactions. The majority are method calls, consisting
of 20 (62%) instance methods and 5 (16%) static methods. The
rest consists of 1 (3%) static field access, and 6 (19%) constructor
calls—there are no instance field accesses.

There are 27 lookup operations on HMap types, of which 20
(74%) resolve to mandatory entries, 6 (22%) to optional entries,
and 1 (4%) is an unresolved lookup. No lookups involved fully
specified maps.

From 93 def expressions in typed code, 52 (56%) are checked,
with a rate of 1 Java interaction for 1.6 checked top-level defini-
tions, and 1 HMap lookup to 1.9 checked top-level definitions. That
leaves 41 (44%) unchecked vars, mainly due to partially complete
porting to Typed Clojure, but in some cases due to unannotated
third-party libraries.

No typed multimethods are defined or used. Of 18 total type
aliases, 7 (39%) contained one HMap type, and none contained
unions of HMaps—on further inspection there was no HMap entry
used to dictate control flow, often handled by multimethods. This is
unusual in our experience, and is perhaps explained by feeds2imap
mainly wrapping wrapping existing javax.mail functionality.

CircleCI CircleCI provides continuous integration services built
with a mixture of open- and closed-source. Typed Clojure has been
used at CircleCI in production systems for at least two years.

CircleCI provided the first author access to the main closed-
source backend system written in Clojure and Typed Clojure.

We determined that CircleCI has a Clojure code base of 382
namespaces comprising around 55,000 lines, excluding tests, in-
cluding 87 namespaces and around 19,000 lines of typed code.
Some of the type-annotated definitions were so annotated by the
first author and contributed back to CircleCI.

The CircleCI code base contains 11 checked multimethods. All
11 dispatch functions are on a HMap key containing a keyword, in
a similar style to Example 8. Correspondingly, all 89 methods are
associated with a keyword dispatch value. The argument type was
in all cases a single HMap type, however, rather than a union type.
In our experience from porting other libraries, this is unusual.

Of 328 lookup operations on HMaps, 208 (64%) resolve to
mandatory keys, 70 (21%) to optional keys, 20 (6%) to absent keys,
and 30 (9%) lookups are unresolved.

11 2015/7/11

Of 95 total type aliases defined with defalias, 62 (65%) in-
volved one or more HMap types.

Out of 105 Java interactions, 26 (25%) are static methods, 36
(34%) are instance methods, 38 (36%) are constructors, and 5 (5%)
are static fields. 35 methods are overriden to return non-nil, and
1 method overridden to accept nil—suggesting that core.typed
disallowing nil as a method argument by default is justified.

Of 464 checked top-level definitions (which consists of 57
defmethod calls and 407 def expressions), 1 HMap lookup oc-
curs per 1.4 top-level definitions, and 1 Java interaction occurs
every 4.4 top-level definitions.

From 1834 def expressions in typed code, only 407 (22%) were
checked. That leaves 1427 (78%) which have unchecked defini-
tions, either by an explicit :no-check annotation or tc-ignore to
suppress type checking, or the warn-on-unannotated-vars op-
tion, which skips def expressions that lack expected types via ann.
From a brief investigation, reasons include unannotated third-party
libraries, work-in-progress conversions to Typed Clojure, unsup-
ported Clojure idioms, and hard-to-check code.

Lessons Based on our empirical survey, it’s clear that the features
we consider are vital—they are used on average more than once per
typed function. Furthermore, as we have seen in the CircleCI case
study, the combination of heterogenous maps and multimethods is
pervasive. The data therefore validates our choice of a type system
that supports expressive multimethod definition and acknolwedges
the relationship between these seemingly-distinct features.

The other lesson from our case studies and from other interac-
tions with Typed Clojure users, it is clear the main barrier to entry
to Typed Clojure for large systems is the requirement to annotate
functions outside the borders of typed code. We hope that this can
be addressed by making annotations available for popular libraries.

6. Related Work
Multimethods Millstein and Chambers and collaborators present
a sequence of systems (Chambers 1992; Chambers and Leavens
1994; Millstein and Chambers 2002) with statically-typed multi-
methods and modular type checking. In contrast to Typed Clojure,
in these system methods declare the types of arguments that they
expect which corresponds to exclusively using class as the dis-
patch function in Typed Clojure. However, Typed Clojure does not
attempt to rule out failed dispatches at runtime.

Record Types Row polymorphism (Wand 1989; Cardelli and
Mitchell 1991; Harper and Pierce 1991), used in systems such
as the OCaml object system, provides many of the features of
HMap types, but defined using universally-quantified row vari-
ables. HMaps in Typed Clojure are instead designed to be used
with subtyping, but nonetheless provide similar expressiveness, in-
cluding the ability to require presence and absence of certain keys.

Dependent JavaScript (Chugh et al. 2012) can track similar
invariants as HMaps with types for JS objects. They must deal with
mutable objects, they feature refinement types and strong updates
to the heap to track changes to objects.

Typed Lua (Maidl et al. 2014) has table types which track
entries in a mutable Lua table. Typed Lua changes the dynamic
semantics of Lua to accommodate mutability: Typed Lua raises
a runtime error for lookups on missing keys—HMaps consider
lookups on missing keys normal.

The integration of completeness information, crucial for many
examples in Typed Clojure, is not provided by any of these systems.

Java Interoperability in Statically Typed Languages Scala (Oder-
sky et al. 2006) has nullable references for compatibility with Java.
Programmers must manually check for null as in Java to avoid
null-pointer exceptions.

Other optional and gradual type systems In addition to Typed
Racket, several other gradual type systems have been developed re-
cently, targeting existing dynamically-typed languages. Reticulated
Python (Vitousek et al. 2014) is an experimental gradually typed
system for Python, implemented as a source-to-source translation
that inserts dynamic checks at language boundaries and supporting
Python’s first-class object system. Typed Clojure does not support
a first-class object system because Java (and Clojure) have nominal
classes, however HMaps offer an alternative to the structural ob-
jects offered by Reticulated. Similarly, GradualTalk (Allende et al.
2014) offers gradual typing for SmallTalk, with nominal classes.

Optional types, requiring less implementation effort and avoid-
ing runtime cost, have been adopted in industry, including Hack
for PHP (Facebook 2014), and Flow (Facebook 2015) and Type-
Script (Microsoft 2014), two extensions of JavaScript. These sys-
tems support forms of occurrence typing, but not in the generality
presented here, nor do they include the other features we present.

7. Conclusion
Optional type systems must be designed with close attention to the
language that they are intended to work for. We have therefore
designed Typed Clojure, an optionally-typed version of Clojure,
with a type system that works with a wide variety of distinctive
Clojure idioms and features. Although based on the foundation of
Typed Racket’s occurrence typing approach, Typed Clojure both
extends the fundamental control-flow based reasoning as well as
applying it to handle seemingly unrelated features such as multi-
methods. In addition, Typed Clojure supports crucial features such
as heterogeneous maps and Java interoperability while integrating
these features into the core type system. Not only are each of
these features important in isolation to Clojure and Typed Clojure
programmers, but they must fit together smoothly to ensure that
existing Clojure programs are easy to convert to Typed Clojure.

The result is a sound, expressive, and useful type system which,
as implemented in core.typed with appropriate extensions, suit-
able for typechecking significant amount of existing Clojure pro-
grams. As a result, Typed Clojure is already successful: it is used
in the Clojure community among both enthusiasts and professional
programmers and receives contributions from many developers.

Our empirical analysis of existing Typed Clojure programs
bears out our design choices. Multimethods, Java interoperation,
and heterogeneous maps are indeed common in both Clojure and
Typed Clojure, meaning that our type system must accommodate
them. Furthermore, they are commonly used together, and the fea-
tures of each are mutually reinforcing. Additionally, the choice to
make Java’s null explicit in the type system is validated by the
many Typed Clojure programs that specify non-nullable types.

However, there is much more that Typed Clojure can pro-
vide. Most significantly, Typed Clojure currently does not provide
gradual typing—interaction between typed and untyped code is
unchecked and thus unsound. We hope to explore the possibilities
of using existing mechanisms for contracts and proxies in Java and
Clojure to enable sound gradual typing for Clojure.

Additionally, the Clojure compiler is unable to use Typed Clo-
jure’s wealth of static information to optimize programs. Address-
ing this requires not only enabling sound gradual typing, but also
integrating Typed Clojure into the Clojure tool so that its informa-
tion can be communicated to the compiler.

Finally, our case study, evaluation, and broader experience in-
dicate that Clojure programmers still find themselves unable to use
Typed Clojure on some of their programs for lack of expressive-
ness. This requires continued effort to analyze and understand the
features and idioms and develop new type checking approaches.

12 2015/7/11

References
E. Allende, O. Callau, J. Fabry, É. Tanter, and M. Denker. Gradual typing

for smalltalk. Science of Computer Programming, 96:52–69, 2014.
G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future

safe for the past: Adding genericity to the java programming language.
In OOPSLA, 1998.

L. Cardelli and J. C. Mitchell. Operations on records. In Mathematical
Structures in Computer Science, pages 3–48, 1991.

C. Chambers. Object-oriented multi-methods in cecil. In Proc. ECOOP,
1992.

C. Chambers and G. T. Leavens. Typechecking and modules for multi-
methods. In Proc. OOPSLA, 1994.

R. Chugh, D. Herman, and R. Jhala. Dependent types for javascript. In
Proc. OOPSLA, 2012.

Facebook. Hack language specification. Technical report, 2014.
Facebook. Flow language specification. Technical report, 2015.
R. Harper and B. Pierce. A record calculus based on symmetric concatena-

tion. In Proc. POPL, 1991.
R. Hickey. The clojure programming language. In Proc. DLS, 2008.
R. Hickey. Clojure sequence documentation, February 2015. URL http:

//clojure.org/sequences.
J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Proc.

POPL, 1988.
A. M. Maidl, F. Mascarenhas, and R. Ierusalimschy. Typed lua: An optional

type system for lua. In Proc. Dyla, 2014.
Microsoft. Typescript language specification. Technical Report Version 1.4,

2014.
T. Millstein and C. Chambers. Modular statically typed multimethods. In

Information and Computation, pages 279–303. Springer-Verlag, 2002.
M. Odersky, V. Cremet, I. Dragos, G. Dubochet, B. Emir, S. McDirmid,

S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, L. Spoon,
M. Zenger, and et al. An overview of the scala programming language
(second edition). Technical report, EPFL Lausanne, Switzerland, 2006.

J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme
and Functional Programming Workshop, September 2006.

T. S. Strickland, S. Tobin-Hochstadt, and M. Felleisen. Practical variable-
arity polymorphism. In Proc. ESOP, 2009.

S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From scripts
to programs. In Companion to the 21st ACM SIGPLAN Symposium on
Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’06, pages 964–974, New York, NY, USA, 2006. ACM. ISBN
1-59593-491-X. . URL http://doi.acm.org/10.1145/1176617.
1176755.

S. Tobin-Hochstadt and M. Felleisen. Logical types for untyped languages.
In Proc. ICFP, ICFP ’10, 2010.

M. M. Vitousek, A. M. Kent, J. G. Siek, and J. Baker. Design and evaluation
of gradual typing for python. In Proc. DLS, 2014.

M. Wand. Type inference for record concatenation and multiple inheritance,
1989.

13 2015/7/11

A. Soundness for Typed Clojure
Assumption A.1 (JVMnew). If ∀i. vi = Ci {

−−−−−→
fldj : vj} or vi = nil and vi is consistent with ρ then either

• JVMnew[C, [
−→
Ci], [

−→vi]] = C {
−−−−−→
fldk : vk} which is consistent with ρ,

• JVMnew[C, [
−→
Ci], [

−→vi]] = err, or
• JVMnew[C, [

−→
Ci], [

−→vi]] is undefined.

Assumption A.2 (JVMgetstatic). If v1 = C1 {fld : vf ,
−−−−−→
fldl : vl}, then either

• JVMgetstatic[C1, v1, f ld, C2] = vf , and either
vf = C2 {

−−−−−−→
fldm : vm} or

vf = nil, or
• JVMgetstatic[C1, v1, f ld, C2] = err.

Assumption A.3 (JVMinvokestatic). If v1 = C1 {
−−−−−→
fldl : vl}, ∀i. vi = Ci {

−−−−−→
fldj : vj} or vi = nil then either

• JVMinvokestatic[C1, vm,mth, [
−→
Ci], [

−→vi], C2] = v and either
v = C2 {

−−−−−−→
fldm : vm} or v = nil, or

• JVMinvokestatic[C1, vm,mth, [
−→
Ci], [

−→vi], C2] = err, or
• JVMinvokestatic[C1, vm,mth, [

−→
Ci], [

−→vi], C2] is undefined.

Lemma A.1. If ρ and ρ′ agree on fv(ψ) and ρ |= ψ then ρ′ |= ψ.

Proof. Since the relevant parts of ρ and ρ′ agree, the proof follows trivially.

Lemma A.2. If

• ψ1 = ψ2[o/x],
• ρ2 |= ψ2,
• ∀v ∈ fv(ψ2)− x. ρ1(v) = ρ2(v),
• and ρ2(x) = ρ1(o)

then ρ1 |= ψ1.

Proof. By induction on the derivation of the model judgement.

Lemma A.3. If ρ |= Γ and Γ ` ψ then ρ |= ψ.

Proof. By structural induction on Γ ` ψ.

Lemma A.4. If Γ ` τπ(x), ρ |= Γ and ρ(π(x)) = v then ` v : τ ; ψ′+|ψ′− ; o′ for some ψ′+, ψ′− and o′.

Proof. Corollary of lemma A.3.

Lemma A.5 (Paths are independent). If ρ(o) = ρ1(o′) then ρ(π(o)) = ρ1(π(o′))

Proof. By induction on π.

Lemma A.6 (class). If ρ ` (class ρ(π(x))) ⇓ C then ρ |= Cπ(x).

Proof. Induction on the definition of class.

Definition A.1. v is consistent with ρ iff ∀ [ρ1, λx
σ .e]c in v, if ` [ρ1, λx

σ .e]c : τ ; tt|ff ; ∅ and ∀ o′ in τ, either o′ = ∅, or o′ = π′(x), or
ρ(o′) = ρ1(o′).

Definition A.2. ρ is consistent iff
∀v ∈ rng(ρ), v is consistent with ρ.

Definition A.3. TrueVal(v) iff v 6= false and v 6= nil.

Definition A.4. FalseVal(v) iff v = false or v = nil.

Lemma A.7 (isa? has correct propositions). If

• Γ ` v1 ⇒ v1 : τ1 ; ψ1+|ψ1− ; o1,
• Γ ` v2 ⇒ v2 : τ2 ; ψ2+|ψ2− ; o2,
• IsA(v1, v2) = v,
• ρ |= Γ,
• IsAProps(o1, τ2) = ψ′+|ψ′−,
• ψ′+ ` ψ+, and

14 2015/7/11

• ψ′− ` ψ−,

then either

• if TrueVal(v) then ρ |= ψ+, or
• if FalseVal(v) then ρ |= ψ−.

Proof. By cases on the definition of IsA and subcases on IsA.

Subcase (IsA(v1, v1) = true, if v1 6= C).
v1 = v2, v1 6= C, v2 6= C, TrueVal(v)
Since TrueVal(v) we prove ρ |= ψ+ by cases on the definition of IsAProps:

Subcase (IsAProps(class(π(x)), (ValC)) = Cπ(x)|Cπ(x)).
o1 = class(π(x)), τ2 = (ValC), Cπ(x) ` ψ+

Unreachable by inversion on the typing relation, since τ2 = (ValC), yet v2 6= C.

Subcase (IsAProps(o, (Val l)) = ((Val l)x |(Val l)x)[o/x] if l 6= C).
τ2 = (Val l), l 6= C, (Val l)x [o1/x] ` ψ+

Since τ2 = (Val l) where l 6= C, by inversion on the typing judgement v2 is either true, false, nil or k by T-True, T-False, T-Nil or
T-Kw.
Since v1 = v2 then τ1 = τ2, and since τ2 = (Val l) then τ1 = (Val l), so ` v1 : (Val l)
If o1 = ∅ then ψ+ = tt and we derive ρ |= tt with M-Top.
Otherwise o1 = π(x) and (Val l)π(x) ` ψ+, and since ` v1 : (Val l) then ` ρ(π(x)) : (Val l), which we can use M-Type to derive
ρ |= (Val l)π(x).

Subcase (IsAProps(o, τ) = tt|tt).
ψ+ = tt

ρ |= tt holds by M-Top.

Subcase (IsA(C1, C2) = true, if ` C1 <: C2).
v1 = C1, v2 = C2, ` C1 <: C2, TrueVal(v)
Since TrueVal(v) we prove ρ |= ψ+ by cases on the definition of IsAProps:

Subcase (IsAProps(class(π(x)), (ValC)) = Cπ(x)|Cπ(x)).
o1 = class(π(x)), τ2 = (ValC2), C2π(x) ` ψ+

By inversion on the typing relation, since class is the last path element of o1 then ρ ` (class ρ(π(x))) ⇓ v1.
Since ρ ` (class ρ(π(x))) ⇓ C1, as v1 = C1, we can derive from lemma A.6 ρ |= C1π(x).
By the induction hypothesis we can derive Γ ` C1π(x), and with the fact ` C1 <: C2 we can use L-Sub to conclude Γ ` C2π(x),
and finally by lemma A.3 we derive ρ |= C2π(x).

Subcase (IsAProps(o, (Val l)) = ((Val l)x |(Val l)x)[o/x] if l 6= C).
τ2 = (Val l), l 6= C, (Val l)x [o1/x] ` ψ+

Unreachable case since τ2 = (Val l) where l 6= C, but v2 = C2.

Subcase (IsAProps(o, τ) = tt|tt).
ψ+ = tt

ρ |= tt holds by M-Top.

Subcase (IsA(v1, v2) = false, otherwise).
v1 6= v2, FalseVal(v)
Since FalseVal(v) we prove ρ |= ψ− by cases on the definition of IsAProps:

Subcase (IsAProps(class(π(x)), (ValC)) = Cπ(x)|Cπ(x)).
o1 = class(π(x)), τ2 = (ValC), Cπ(x) ` ψ−
By inversion on the typing relation, since class is the last path element of o1 then ρ ` (class ρ(π(x))) ⇓ v1.
By the definition of class either v1 = C or v1 = nil.
If v1 = nil, then we know from the definition of IsA that ρ(π(x)) = nil.
Since ` ρ(π(x)) : nil, and there is no v1 such that both ` ρ(π(x)) : C and ` ρ(π(x)) : nil , we use M-NotType to derive ρ |= Cπ(x).
Similarly if v1 = C1, by the definition of IsAProps we know ` C1 6<: C and ρ(π(x)) = C1.
Since ` ρ(π(x)) : C1, and there is no v1 such that both ` v1 : C and ` v1 : C1, we use M-NotType to derive ρ |= Cπ(x).

15 2015/7/11

Subcase (IsAProps(o, (Val l)) = ((Val l)x |(Val l)x)[o/x] if l 6= C).
τ2 = (Val l), l 6= C, (Val l)x [o1/x] ` ψ−
Since τ2 = (Val l) where l 6= C, by inversion on the typing judgement v2 is either true, false, nil or k by T-True, T-False, T-Nil or
T-Kw.
If o1 = ∅ then ψ− = tt and we derive ρ |= tt with M-Top.
Otherwise o1 = π(x) and (Val l)π(x) ` ψ−. Noting that v1 6= v2, we know ` ρ(π(x)) : σ where σ 6= (Val l), and there is no v1 such
that both ` v1 : (Val l) and ` v1 : σ so we can use M-NotType to derive ρ |= (Val l)π(x).

Subcase (IsAProps(o, τ) = tt|tt).
ψ− = tt

ρ |= tt holds by M-Top.

Lemma A.8. If Γ ` e′ ⇒ e : τ ; ψ+|ψ− ; o, ρ |= Γ, ρ is consistent, and ρ ` e ⇓ α then either

• ρ ` e ⇓ v and all of the following hold:
1. either o = ∅ or ρ(o) = v,
2. either TrueVal(v) and ρ |= ψ+ or FalseVal(v) and ρ |= ψ−,
3. ` v ⇒ v : τ ; ψ′+|ψ′− ; o′ for some ψ′+, ψ′− and o′, and
4. v is consistent with ρ, or

• ρ ` e ⇓ err.

Proof. By induction and cases on the derivation of ρ ` e ⇓ α, and subcases on the penultimate rule of the derivation of Γ `
e′ ⇒ e : τ ; ψ+|ψ− ; o followed by T-Subsume as the final rule.
Case (B-Val).

Subcase (T-True). v = true, e′ = true, e = true, ` true<:τ, tt ` ψ+, ff ` ψ−, ` ∅ <: o
Proving part 1 is trivial: o is a superobject of ∅, which can only be ∅.
To prove part 2, we note that v = true and tt ` ψ+, so ρ |= ψ+ by M-Top.
Part 3 holds as e can only be reduced to itself via B-Val.
Part 4 holds vacuously.

Subcase (T-HMap). v = {−−−−−→vk 7→ vv}, e′ = {−−−−−→vk 7→ vv}, e = {−−−−−→vk 7→ vv}, ` (HMapCM)<: τ, tt ` ψ+, ff ` ψ−, ` ∅ <: o,
−−−−−−−−−→
` vk : (Val k),

−−−−−→
` vv : τv ,M = {

−−−−→
k 7→ τv}

Similar to T-True.
Part 4 holds by the induction hypothese on −→vk and −→vv .

Subcase (T-Kw). v = k, e′ = k, e = k, ` (Val k)<: τ, tt ` ψ+, ff ` ψ−, ` ∅ <: o
Similar to T-True.
Subcase (T-Str). Similar to T-Kw.

Subcase (T-False). v = false, e′ = false, e = false, ` false<:τ, ff ` ψ+, tt ` ψ−, ` ∅ <: o
Proving part 1 is trivial: o is a superobject of ∅, which must be ∅.
To prove part 2, we note that v = false and tt ` ψ−, so ρ |= ψ− by M-Top.
Part 3 holds as e can only be reduced to itself via B-Val.
Part 4 holds vacuously.

Subcase (T-Class). v = C, e′ = C, e = C, ` (ValC)<: τ, tt ` ψ+, ff ` ψ−, ` ∅ <: o
Similar to T-True.

Subcase (T-Instance). v = C {
−−−−−→
fldi : vi}, e′ = C {

−−−−→
fld : v}, e = C {

−−−−→
fld : v}, ` C <: τ, tt ` ψ+, ff ` ψ−, ` ∅ <: o

Similar to T-True.
Part 4 holds by the induction hypotheses on −→vi .

Subcase (T-Nil). v = nil, e′ = nil, e = nil, ` nil<:τ, ff ` ψ+, tt ` ψ−, ` ∅ <: o
Similar to T-False.

Subcase (T-Multi). v = [v1, {−−−−−→vk 7→ vv}]m e′ = [v1, {−−−−−→vk 7→ vv}]m, ` v1 ⇒ v1 : τ1,
−−−−−−−−−−→
` vk ⇒ vk :> ,

−−−−−−−−−→
` vv ⇒ vv : σ, e = [v1, {−−−−−→vk 7→ vv}]m,

` (Multiσ τ1)<: τ, tt ` ψ+, ff ` ψ−, ` ∅ <: o
Similar to T-True.

16 2015/7/11

Subcase (T-Const). e = c, ` δτ(c)<: τ, tt ` ψ+, ff ` ψ−, ` ∅ <: o
Parts 1, 2 and 3 hold for the same reasons as T-True.

Case (B-Local). ρ(x) = v , ρ ` x ⇓ v

Subcase (T-Local). e′ = x, e = x, (∪ nil false) x ` ψ+, (∪ nil false) x ` ψ−, ` x <: o, Γ ` τx
Part 1 follows from ρ(o) = v, since either o = x and ρ(x) = v is a premise of B-Local, or o = ∅ which also satisfies the goal.
Part 2 considers two cases: if TrueVal(v), then ρ |= (∪ nil false)x holds by M-NotType; if FalseVal(v), then ρ |= (∪ nil false)x holds
by M-Type.
We prove part 3 by observing Γ ` τx , ρ |= Γ, and ρ(x) = v (by B-Local) which gives us the desired result.
Part 4 holds vacuously.

Case (B-Do). ρ ` e1 ⇓ v1, ρ ` e2 ⇓ v

Subcase (T-Do). e′ = (do e′1 e
′
2), Γ ` e′1 ⇒ e1 : τ1 ; ψ1+|ψ1− ; o1, Γ, ψ1+ ∨ ψ1− ` e′ ⇒ e : τ ; ψ+|ψ− ; o, e = (do e1 e2)

For all parts we note since e1 can be either a true or false value then ρ |= Γ, ψ1+ ∨ ψ1− by M-Or, which together with Γ, ψ1+ ∨ ψ1− `
e2 : τ ; ψ+|ψ− ; o, and ρ ` e2 ⇓ v allows us to apply the induction hypothesis on e2.
To prove part 1 we use the induction hypothesis on e2 to show either o = ∅ or ρ(o) = v, since e always evaluates to the result of e2.
For part 2 we use the induction hypothesis on e2 to show if TrueVal(v) then ρ |= ψ+ or if FalseVal(v) then ρ |= ψ−.
Parts 3 and 4 follow from the induction hypothesis on e2.

Case (BE-Do1). ρ ` e1 ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case (BE-Do2). ρ ` e1 ⇓ v1, ρ ` e2 ⇓ err, ρ ` e ⇓ err
As above.

Case (B-New).
−−−−−−−→
ρ ` ei ⇓ vi, JVMnew[C1, [

−→
Ci], [

−→vi]] = v

Subcase (T-New). e′ = (new C
−→
e′i), [

−→
Ci] ∈ CT [C][c],

−−−−−−−−−−→
JTnil(Ci) = τi,

−−−−−−−−−−→
Γ ` e′i ⇒ ei : τi, e = (new

[
−→
Ci]

C −→ei), ` JT(C)<: τ, tt ` ψ+,
ff ` ψ−, ` ∅ <: o
Part 1 follows o = ∅.
Part 2 requires some explanation. The two false values in Typed Clojure cannot be constructed with new, so the only case is v 6= false (or
nil) where ψ+ = tt so ρ |= ψ+. Void also lacks a constructor.
Part 3 holds as B-New reduces to a non-nilable instance of C via JVMnew (by assumption A.1), and τ is a supertype of JT (C).

Subcase (T-NewStatic). e′ = (new
[
−→
Ci]

C −→ei)
Non-reflective constructors cannot be written directly by the user, so we can assume the class information attached to the syntax
corresponds to an actual constructor by inversion from T-New.
The rest of this case progresses like T-New.

Case (BE-New1).
−−−−−−−−−−−→
ρ ` ei−1 ⇓ vi−1, ρ ` ei ⇓ err, ρ ` e ⇓ err

Trivially reduces to an error.

Case (BE-New2).
−−−−−−−→
ρ ` ei ⇓ vi, JVMnew[C1, [

−→
Ci], [

−→vi]] = err, ρ ` e ⇓ err
As above.

Case (B-Field). ρ ` e1 ⇓ C1 {fld : v}

Subcase (T-Field). e′ = (. e′1 fld), Γ ` e′ ⇒ e : σ, ` σ <: Object , TJ (σ) = C1, fld 7→ C2 ∈ CT [C1][f], e = (. e1 fld
C1
C2

)
` JTnil(C2)<: τ, tt ` ψ+, tt ` ψ−, ` ∅ <: o
Part 1 is trivial as o is always ∅.
Part 2 holds trivially; v can be either a true or false value and both ψ+ and ψ− are tt.
Part 3 relies on the semantics of JVMgetstatic (assumption A.2) in B-Field, which returns a nilable instance of C2, and τ is a supertype of
JTnil(C2). Notice ` σ <: Object is required to guard from dereferencing nil, as C1 erases occurrences of nil in σ via TJ (σ) = C1.

Subcase (T-FieldStatic). e′ = (. e1 fld
C1
C2

)
Non-reflective field lookups cannot be written directly by the user, so we can assume the class information attached to the syntax
corresponds to an actual field by inversion from T-Field.
The rest of this case progresses like T-Field.

17 2015/7/11

Case (BE-Field). ρ ` e1 ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case (B-Method). ρ ` em ⇓ vm,
−−−−−−−→
ρ ` ea ⇓ va, JVMinvokestatic[C1, vm,mth, [

−→
Ca], [−→va], C2] = v

Subcase (T-Method). Γ ` e′ ⇒ e : σ, ` σ <: Object , TJ (σ) =C1,mth 7→ [[
−→
Ci], C2] ∈ CT [C1][m],

−−−−−−−−−−→
JTnil(Ci) = τi,

−−−−−−−−−−→
Γ ` e′i ⇒ ei : τi,

e = (. em (mthC1

[[
−→
Ci],C2]

−→ea)), ` JTnil(C2)<: τ, tt ` ψ+, tt ` ψ−, ` ∅ <: o

Part 1 is trivial as o is always ∅.
Part 2 holds trivially, v can be either a true or false value and both ψ+ and ψ− are tt.
Part 3 relies on the semantics of JVMinvokestatic (assumption A.3) in B-Method, which returns a nilable instance ofC2, and τ is a supertype
of JTnil(C2) = . Notice ` σ <: Object is required to guard from dereferencing nil, as C1 erases occurrences of nil in σ via TJ (σ) =
C1.

Subcase (T-MethodStatic). e′ = (. e1 (mthC1

[[
−→
Ci],C2]

−→ei))
Non-reflective method invocations cannot be written directly by the user, so we can assume the class information attached to the syntax
corresponds to an actual method by inversion from T-Method.
The rest of this case progresses like T-Method.

Case (BE-Method1). ρ ` em ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case (BE-Method2). ρ ` em ⇓ vm,
−−−−−−−−−−−→
ρ ` en−1 ⇓ vn−1, ρ ` en ⇓ err, ρ ` e ⇓ err

As above.
Case (BE-Method3). ρ ` em ⇓ vm,

−−−−−−−→
ρ ` ea ⇓ va, JVMinvokestatic[C1, vm,mth, [

−→
Ca], [−→va], C2] = err, ρ ` e ⇓ err

As above.
Case (B-DefMulti). v = [vd, {}]m, ρ ` ed ⇓ vd

Subcase (T-DefMulti). e′ = (defmulti σ e′d), σ = x:τ1
ψ1+|ψ1−−−−−−−→

o1
τ2, τd = x:τ1

ψ2+|ψ2−−−−−−−→
o2

τ3, Γ ` e′ ⇒ e : σ′ , e = (defmulti σ ed),

` (Multiσ τd)<: τ, tt ` ψ+, ff ` ψ−, ` ∅ <: o
Part 1 and 2 hold for the same reasons as T-True. For part 3 we show ` [vd, {}]m : (Multiσ τd) by T-Multi, since ` vd : τd by the
inductive hypothesis on ed and {} vacuously satisfies the other premises of T-Multi, so we are done.

Case (BE-DefMulti). ρ ` ed ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case (B-DefMethod).

1. v = [vd, t
′]m,

2. ρ ` em ⇓ [vd, t]m,
3. ρ ` ev ⇓ vv ,
4. ρ ` ef ⇓ vf ,
5. t′ = t[vv 7→ vf]

Subcase (T-DefMethod).
6. e′ = (defmethod e′m e′v e

′
f),

7. τm = x:τ1
ψm+|ψm−−−−−−−−→

om
σ,

8. τd = x:τ1
ψd+|ψd−−−−−−−→

od
σ′ ,

9. Γ ` e′m ⇒ em : (Multi τm τd)
10. IsAProps(od, τv) = ψi+|ψi−,
11. Γ ` ev ⇒ ev : τv
12. Γ, τ1x , ψi+ ` e′f ⇒ ef : σ ; ψm+|ψm− ; om
13. e = (defmethod em ev ef),
14. ef = λxτ1 .eb,
15. ` (Multi τm τd)<: τ,
16. tt ` ψ+,
17. ff ` ψ−,
18. ` ∅ <: o

18 2015/7/11

Part 1 and 2 hold for the same reasons as T-True, noting that the propositions and object agree with T-Multi.
For part 3 we show ` [vd, t[vv 7→ vf]]m : (Multi τm τd) by noting ` vd : τd, ` vv :> and ` vf : τm, and since t is in the correct form
by the inductive hypothesis on em we can satisfy all premises of T-Multi, so we are done.

Case (BE-DefMethod1). ρ ` em ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case (BE-DefMethod2). ρ ` em ⇓ [vd, t]m, ρ ` ev ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case (BE-DefMethod3). ρ ` em ⇓ [vd, t]m, ρ ` ev ⇓ vv , ρ ` ef ⇓ err, ρ ` e ⇓ err
Trivially reduces to an error.

Case (B-BetaClosure).

• ρ ` e ⇓ v,
• ρ ` e1 ⇓ [ρc, λx

σ .eb]c,
• ρ ` e2 ⇓ v2,
• ρc[x 7→ v2] ` eb ⇓ v

Subcase (T-App).
e′ = (e′1 e

′
2),

Γ ` e′1 ⇒ e1 : x:σ
ψf+

|ψf−−−−−−−→
of

τf ; ψ1+|ψ1− ; o1,

Γ ` e′2 ⇒ e2 : σ ; ψ2+|ψ2− ; o2,
e = (e1 e2),
` τf [o2/x]<: τ,
ψf+[o2/x] ` ψ+,
ψf−[o2/x] ` ψ−,
` of [o2/x]<: o

By inversion on e1 from T-Clos there is some environment Γc such that
ρc |= Γc and

Γc ` λxσ .eb : x:σ
ψf+

|ψf−−−−−−−→
of

τf ; ψ1+|ψ1− ; o1,

and also by inversion on e1 from T-Abs
Γc, σx ` e′b ⇒ eb : τf ; ψf+|ψf− ; of .

From
ρc |= Γc,
Γ ` e′2 ⇒ e2 : σ ; ψ2+|ψ2− ; o2 and
ρ ` e2 ⇓ v2,

we know (by substitution) ρc[x 7→ v2] |= Γc, σx .
We want to prove Γc ` e′b[v2/x]⇒ eb[v2/x] : τf [o2/x] ; ψf+|ψf−[o2/x] ; of [o2/x], which can be justified by noting

Γc, σx ` e′b ⇒ eb : τf ,
Γ ` e′2 ⇒ e2 : σ ; ψ2+|ψ2− ; o2 and
ρ ` e2 ⇓ v2.

From the previous fact and ρc |= Γc, we know ρc ` eb[v2/x] ⇓ v.
Noting that ` τf [o2/x]<: τ, ψf+[o2/x] ` ψ+, ψf−[o2/x] ` ψ− and ` of [o2/x]<: o, we can use

Γc ` e′b[v2/x]⇒ eb[v2/x] : τf [o2/x] ; ψf+|ψf−[o2/x] ; of [o2/x],
ρc |= Γc,
ρc is consistent (via induction hypothesis on e′1), and
ρc ` eb[v2/x] ⇓ v.

to apply the induction hypothesis on e′b[v2/x] and satisfy all conditions.

Case (B-Delta). ρ ` e1 ⇓ c, ρ ` e2 ⇓ v2, δ(c, v2) = v

Subcase (T-App).
e′ = (e′1 e

′
2),

Γ ` e′1 ⇒ e1 : x:σ
ψf+

|ψf−−−−−−−→
of

τf ; ψ1+|ψ1− ; o1,

Γ ` e′2 ⇒ e2 : σ ; ψ2+|ψ2− ; o2,

19 2015/7/11

e = (e1 e2),
` τf [o2/x]<: τ,
ψf+[o2/x] ` ψ+,
ψf−[o2/x] ` ψ−,
` of [o2/x]<: o

Prove by cases on c.

Subcase (c = class). ` x:> tt|tt−−−−→
class(x)

(
⋃

nil Class)<: x:σ
ψf+

|ψf−−−−−−−→
of

τf

Prove by cases on v2.

Subcase (v2 = C {
−−−−−→
fldi : vi}). v = C

To prove part 1, note ` of [o2/x]<: o, and ` class(x)<: of . Then either o = ∅ and we are done, or o = class(o2) and by the
induction hypothesis on e2 we know ρ(o2) = v2 and by the definition of path translation we know ρ(class(o2)) = (class ρ(o2)),
which evaluates to v.
Part 2 is trivial since both propositions can only be tt.
Part 3 holds because v = C, ` (

⋃
nil Class)<: τf [o2/x] and ` τf [o2/x]<: τ, so ` v : τ since ` C : (

⋃
nil Class).

Subcase (v2 = C). v = Class
As above.

Subcase (v2 = true). v = B
As above.

Subcase (v2 = false). v = B
As above.

Subcase (v2 = [ρ, λxτ .e]c). v = Fn
As above.

Subcase (v2 = [vd, t]m). v = Map
As above.

Subcase (v2 = {−−−−−→v1 7→ v2}). v = K
As above.

Subcase (v2 = nil). v = nil
Parts 1 and 2 as above. Part 3 holds because v = nil and ` nil : (

⋃
nil Class).

Case (B-BetaMulti).

• ρ ` e1 ⇓ [vd, t]m,
• ρ ` e2 ⇓ v2,
• ρ ` (vd v2) ⇓ ve,
• GM (t, ve) = vg ,
• ρ ` (vg v2) ⇓ v,
• t = {−−−−−→vk 7→ vv}

Subcase (T-App).
e′ = (e′1 e

′
2),

Γ ` e′1 ⇒ e1 : x:σ
ψf+

|ψf−−−−−−−→
of

τf ; ψ1+|ψ1− ; o1,

Γ ` e′2 ⇒ e2 : σ ; ψ2+|ψ2− ; o2,
e = (e1 e2),
` τf [o2/x]<: τ,
ψf+[o2/x] ` ψ+,
ψf−[o2/x] ` ψ−,
` of [o2/x]<: o,

By inversion on e1 via T-Multi we know
Γ ` e′1 ⇒ e1 : (Multiσt σd) ; ψ1+|ψ1− ; o1,

20 2015/7/11

σt = x:σ
ψf+

|ψf−−−−−−−→
of

τf ,

σd = x:σ
ψd+|ψd−−−−−−−→

od
τd,

` vd : σd−−−−−→
` vk :> , and−−−−−→
` vv : σt.

By the inductive hypothesis on ρ ` e2 ⇓ v2 we know Γ ` v2 ⇒ v2 : σ ; ψ2+|ψ2− ; o2.
We then consider applying the evaluated argument to the dispatch function: ρ ` (vd v2) ⇓ ve.
Since we can satisfy T-App with

` vd : x:σ
ψd+|ψd−−−−−−−→

od
τd, and

Γ ` v2 ⇒ v2 : σ ; ψ2+|ψ2− ; o2.
we can then apply the inductive hypothesis to derive Γ ` ve ⇒ ve : τd[o2/x] ; ψd+|ψd−[o2/x] ; od[o2/x].
Now we consider how we choose which method to dispatch to.
As GM (t, ve) = vg , by inversion on GM we know there exists exactly one vk such that vk 7→ vg ∈ t and IsA(ve, vk) = true.
By inversion we know T-DefMethod must have extended t with the well-typed dispatch value vk, thus ` vk : τk, and the well-typed
method vg , so ` vg : σt.
We can also prove that given

Γ ` ve ⇒ ve : τd[o2/x] ; ψd+|ψd−[o2/x] ; od[o2/x].
Γ ` vk : τk,
IsA(ve, vk) = true,
ρ |= Γ,
IsAProps(od[o2/x], τk) = ψ′+|ψ′−,
ψ′+ ` ψ′+, and
ψ′− ` ψ′−.

we can apply Lemma A.7 to derive then ρ |= ψ′+.
Now we consider applying the evaluated argument to the chosen method: ρ ` (vg v2) ⇓ v.
By inversion via B-DefMethod we can assume vg = λxσ .eb, ie. that we have chosen a method to dispatch to that is a closure.
Because ρ ` (vg v2) ⇓ v and Γ ` v2 : σ, by inversion via B-BetaClosure we know v = eb[v2/x].
With the following premises:

Γ, ψ′+ ` e′b[v2/x]⇒ eb[v2/x] : τf [o2/x] ; ψf+|ψf−[o2/x] ; of [o2/x] ,
− From Γ, σx ` eb ⇒ eb : τf ; ψf+|ψf− ; of via the inductive hypothesis on ρ ` (λxσ .eb v2) ⇓ v,
− then we can derive Γ ` e′b[v2/x]⇒ eb[v2/x] : τf [o2/x] ; ψf+|ψf−[o2/x] ; of [o2/x] via substitution and the fact that x is

fresh therefore x 6∈ fv(Γ) so we do not need to substitution for x in Γ.
− ρ |= Γ, ψ′+ because ρ |= Γ and ρ |= ψ′+ via M-And.
ρ |= Γ, ψ′+,
− From ρ |= Γ and
− ρ |= ψ′+ via M-And.
ρ is consistent, and
ρ ` eb[v2/x] ⇓ v.

we can apply the inductive hypothesis to satisfy our overall goal for this subcase.

Case (BE-Beta1).
Reduces to an error.

Case (BE-Beta2).
Reduces to an error.

Case (BE-BetaClosure).
Reduces to an error.

Case (BE-BetaMulti1).
Reduces to an error.

Case (BE-BetaMulti2).
Reduces to an error.

Case (BE-Delta).
Reduces to an error.

Case (B-IsA). ρ ` e1 ⇓ v1, ρ ` e2 ⇓ v2, IsA(v1, v2) = v

21 2015/7/11

Subcase (T-IsA). e′ = (isa? e′1 e′2), Γ ` e′1 ⇒ e1 : τ1 ; ψ1+|ψ1− ; o1, Γ ` e′2 ⇒ e2 : τ2 ; ψ2+|ψ2− ; o2, e = (isa? e1 e2), ` B<:τ,
IsAProps(o1, τ2) = ψ′+|ψ′−, ψ′+ ` ψ+, ψ′− ` ψ−, ` ∅ <: o
Part 1 holds trivially with o = ∅.
For part 2, by the induction hypothesis on e1 and e2 we know Γ ` v1 ⇒ v1 : τ1 ; ψ1+|ψ1− ; o1 and Γ ` v2 ⇒ v2 : τ2 ; ψ2+|ψ2− ; o2,
so we can then apply Lemma A.7 to reach our goal.
Part 3 holds because by the definition of IsA v can only be true or false, and since Γ ` true : τ and Γ ` false : τ we are done.

Case (BE-IsA1). ρ ` e1 ⇓ err
Trivially reduces to an error.

Case (BE-IsA2). ρ ` e1 ⇓ v1, ρ ` e2 ⇓ err
Trivially reduces to an error.

Case (B-Get). ρ ` em ⇓ vm, vm = {
−−−−→
(va vb)}, ρ ` ek ⇓ k, k ∈ dom({

−−−−→
(va vb)}), {

−−−−→
(va vb)}[k] = v

Subcase (T-GetHMap). e′ = (get e′m e′k), Γ ` e′m ⇒ em : (
⋃ −−−−−−−−−−→

(HMapEMA)) ; ψm+|ψm− ; om, Γ ` e′k ⇒ ek : (Val k),
−−−−−−−→
M[k] = τi,

e = (get em ek), ` (
⋃ −→τi)<: τ , ψ+ = tt, ψ− = tt, ` keyk(x)[om/x]<: o

To prove part 1 we consider two cases on the form of om:
if om = ∅ then o = ∅ by substitution, which gives the desired result;
if om = πm(xm) then ` keyk(om)<: o by substitution. We note by the definition of path translation ρ(keyk(om)) = (get ρ(om) k)
and by the induction hypothesis on em ρ(om) = {

−−−−→
(va vb)}, which together imply ρ(o) = (get {

−−−−→
(va vb)} k). Since this is the same

form as B-Get, we can apply the premise {
−−−−→
(va vb)}[k] = v to derive ρ(o) = v.

Part 2 holds trivially as ψ+ = tt and ψ− = tt.

To prove part 3 we note that (by the induction hypothesis on em) ` vm : (
⋃ −−−−−−−−−−→

(HMapEMA)), where
−−−−−−−→
M[k] = τi, and both k ∈

dom({
−−−−→
(va vb)}) and {

−−−−→
(va vb)}[k] = v imply ` v : (

⋃ −→τi).

Subcase (T-GetHMapAbsent). e′ = (get e′m e′k), Γ ` e′k ⇒ ek : (Val k), Γ ` e′m ⇒ em : (HMapEMA) ; ψm+|ψm− ; om, k ∈ A,
e = (get em ek), ` nil<:τ, ψ+ = tt, ψ− = tt, ` keyk(x)[om/x]<: o

Unreachable subcase because k ∈ dom({
−−−−→
(va vb)}), contradicts k ∈ A.

Subcase (T-GetHMapPartialDefault). e′ = (get e′m e′k), Γ ` e′k ⇒ ek : (Val k), Γ ` e′m ⇒ em : (HMapPMA) ; ψm+|ψm− ; om,
k 6∈ dom(M), k 6∈ A, e = (get em ek), τ = >, ψ+ = tt, ψ− = tt, ` keyk(x)[om/x]<: o
Parts 1 and 2 are the same as the B-Get subcase. Part 3 is trivial as τ = >.

Case (B-GetMissing). v = nil, ρ ` em ⇓ {
−−−−→
(va vb)}, ρ ` ek ⇓ k, k 6∈ dom({

−−−−→
(va vb)})

Subcase (T-GetHMap). e′ = (get e′m e′k), Γ ` e′m ⇒ em : (
⋃ −−−−−−−−−−→

(HMapEMA)) ; ψm+|ψm− ; om, Γ ` e′k ⇒ ek : (Val k),
−−−−−−−→
M[k] = τi,

e = (get em ek), ` (
⋃ −→τi)<: τ, ψ+ = tt, ψ− = tt, ` keyk(x)[om/x]<: o

Unreachable subcase because k 6∈ dom({
−−−−→
(va vb)}) contradictsM[k] = τ.

Subcase (T-GetHMapAbsent). e′ = (get e′m e′k), Γ ` e′k ⇒ ek : (Val k), Γ ` e′m ⇒ em : (HMapEMA) ; ψm+|ψm− ; om, k ∈ A,
e = (get em ek), ` nil<:τ, ψ+ = tt, ψ− = tt, ` keyk(x)[om/x]<: o
To prove part 1 we consider two cases on the form of om:

if om = ∅ then o = ∅ by substitution, which gives the desired result;
if om = πm(xm) then ` keyk(om)<: o by substitution. We note by the definition of path translation ρ(keyk(om)) = (get ρ(om) k)
and by the induction hypothesis on em ρ(om) = {

−−−−→
(va vb)}, which together imply ρ(o) = (get {

−−−−→
(va vb)} k). Since this is the same

form as B-GetMissing, we can apply the premise v = nil to derive ρ(o) = v.
Part 2 holds trivially as ψ+ = tt and ψ− = tt.

To prove part 3 we note that em has type (HMapEM A) where k ∈ A, and the premises of B-GetMissing k 6∈ dom({
−−−−→
(va vb)}) and v

= nil tell us v must be of type τ.

Subcase (T-GetHMapPartialDefault). e′ = (get e′m e′k), Γ ` e′k ⇒ ek : (Val k), Γ ` e′m ⇒ em : (HMapPMA) ; ψm+|ψm− ; om,
k 6∈ dom(M), k 6∈ A, e = (get em ek), τ = >, ψ+ = tt, ψ− = tt, ` keyk(x)[om/x]<: o
Parts 1 and 2 are the same as the B-GetMissing subcase of T-GetHMapAbsent. Part 3 is trivial as τ = >.

Case (BE-Get1).
Reduces to an error.

Case (BE-Get2).
Reduces to an error.

22 2015/7/11

Case (B-Assoc). v = {
−−−−→
(va vb)}[k 7→ vv], ρ ` em ⇓ {

−−−−→
(va vb)}, ρ ` ek ⇓ k, ρ ` ev ⇓ vv

Subcase (T-AssocHMap). Γ ` e′m ⇒ em : (HMapEMA), Γ ` e′k ⇒ ek : (Val k), Γ ` e′v ⇒ ev : τ, k 6∈ A, e′ = (assoc e′m e′k e
′
v), e

= (assoc em ek ev), ` (HMapEM[k 7→ τ] A)<: τ, ψ+ = tt, ψ− = ff , o = ∅
Parts 1 and 2 hold for the same reasons as T-True.

Case (BE-Assoc1).
Reduces to an error.

Case (BE-Assoc2).
Reduces to an error.

Case (BE-Assoc3).
Reduces to an error.

Case (B-IfFalse). ρ ` e1 ⇓ false or ρ ` e1 ⇓ nil, ρ ` e3 ⇓ v

Subcase (T-If). e′ = (if e′1 e′2 e′3), Γ ` e′1 ⇒ e1 : τ1 ; ψ1+|ψ1− ; o1, Γ, ψ1+ ` e′2 ⇒ e2 : τ ; ψ2+|ψ2− ; o, Γ, ψ1− `
e′3 ⇒ e3 : τ ; ψ3+|ψ3− ; o, e = (if e1 e2 e3), ψ2+ ∨ ψ3+ ` ψ+, ψ2− ∨ ψ3− ` ψ−
For part 1, either o = ∅, or e evaluates to the result of e3.
To prove part 2, we consider two cases:

if FalseVal(v) then e3 evaluates to a false value so ρ |= ψ3−, and thus ρ |= ψ2− ∨ ψ3− by M-Or,
otherwise TrueVal(v), so e3 evaluates to a true value so ρ |= ψ3+, and thus ρ |= ψ2+ ∨ ψ3+ by M-Or.

Part 3 is trivial as ρ ` e3 ⇓ v and ` v : τ by the induction hypothesis on e3.

Case (B-IfTrue). ρ ` e1 ⇓ v1, v1 6= false, v1 6= nil, ρ ` e2 ⇓ v

Subcase (T-If). e′ = (if e′1 e′2 e′3), Γ ` e′1 ⇒ e1 : τ1 ; ψ1+|ψ1− ; o1, Γ, ψ1+ ` e′2 ⇒ e2 : τ ; ψ2+|ψ2− ; o, Γ, ψ1− `
e′3 ⇒ e3 : τ ; ψ3+|ψ3− ; o, e = (if e1 e2 e3), ψ2+ ∨ ψ3+ ` ψ+, ψ2− ∨ ψ3− ` ψ−
For part 1, either o = ∅, or e evaluates to the result of e2.
To prove part 2, we consider two cases:

if FalseVal(v) then e2 evaluates to a false value so ρ |= ψ2−, and thus ρ |= ψ2− ∨ ψ3− by M-Or,
otherwise TrueVal(v), so e2 evaluates to a true value so ρ |= ψ2+, and thus ρ |= ψ2+ ∨ ψ3+ by M-Or.

Part 3 is trivial as ρ ` e2 ⇓ v and ` v : τ by the induction hypothesis on e2.

Case (BE-If).
Reduces to an error.

Case (BE-IfFalse).
Reduces to an error.

Case (BE-IfTrue).
Reduces to an error.

Case (B-Let). e = (let [x e1] e2), ρ ` e1 ⇓ v1, ρ[x 7→ v1] ` e2 ⇓ v

Subcase (T-Let). e′ = (let [x e′1] e′2), Γ ` e′1 ⇒ e′1 : σ ; ψ1+|ψ1− ; o1, ψ′ = (∪ nil false) x ⊃ ψ1+, ψ′′ = (∪ nil false) x ⊃ ψ1−,
Γ, σx , ψ

′, ψ′′ ` e′2 ⇒ e2 : τ ; ψ+|ψ− ; o
For all the following cases (with a reminder that x is fresh) we apply the induction hypothesis on e2. We justify this by noting that
occurrences of x inside e2 have the same type as e1 and simulate the propositions of e1 because

Γ, σx , ψ
′, ψ′′ ` e′2 ⇒ e2 : τ ; ψ+|ψ− ; o,

ρ[x 7→ v1] |= Γ, σx , ψ
′, ψ′′,

ρ[x 7→ v1] is consistent, and
ρ[x 7→ v1] ` e2 ⇓ v.

We prove parts 1, 2 and 3 by directly using the induction hypothesis on e2.

Case (BE-Let).
Reduces to an error.

Case (B-Abs). v = [ρ, λxσ .e1]c

Subcase (T-Clos). e′ = [ρ, λxσ .e1]c, ∃Γ′.ρ |= Γ′ and Γ′ ` λxσ .e1 ⇒ λxσ .e1 : τ ; ψf+|ψf− ; of , e = [ρ, λxσ .e1]c, ψ+ = tt, ψ− =
ff , o = ∅
We assume some Γ′, such that

23 2015/7/11

ρ |= Γ′

Γ′ ` λxσ .e1 : τ ; ψ+|ψ− ; o.
Note the last rule in the derivation of Γ′ ` λxσ .e1 : τ ; ψ+|ψ− ; o must be T-Abs, so ψ+ = tt, ψ− = ff and o = ∅. Thus parts 1 and 2
hold for the same reasons as T-True. Part 3 holds as v has the same type as λxσ .e1 under Γ′.

Case (B-Abs). v = [ρ, λxσ .e1]c, ρ ` λxτ .e1 ⇓ [ρ, λxσ .e1]c

Subcase (T-Abs). e′ = λxσ .e′1, Γ, σx ` e′1 ⇒ e1 : τ ; ψ1+|ψ1− ; o1, ` x:σ
ψ1+|ψ1−−−−−−−→

o1
τ1 <: τ, tt ` ψ+, ff ` ψ−, o = ∅

Parts 1 and 2 hold for the same reasons as T-True. Part 3 holds directly via T-Clos, since v must be a closure.

Case (BE-Error). ρ ` e ⇓ err

Subcase (T-Error). e′ = err, e = err, τ = ⊥, ψ+ = ff , ψ− = ff , o = ∅
Trivially reduces to an error.

Theorem A.1 (Well-typed programs don’t go wrong). If ` e′ ⇒ e : τ ; ψ+|ψ− ; o then 6` e ⇓ wrong.

Proof. Corollary of lemma A.8, since by lemma A.8 when ` e′ ⇒ e : τ ; ψ+|ψ− ; o, either ` e ⇓ v or ` e ⇓ err, therefore
6` e ⇓ wrong.

Theorem A.2 (Type soundness). If Γ ` e′ ⇒ e : τ ; ψ+|ψ− ; o and ρ ` e ⇓ v then ` v ⇒ v : τ ; ψ′+|ψ′− ; o′ for some ψ′+, ψ′− and
o′

Proof. Corollary of lemma A.8.

24 2015/7/11

d, e ::= x | v | (e e) | λxτ .e | (if e e e) | (do e e) | (let [x e] e) | β | R | E | M | G Expressions
v ::= l | I | {} | c | n | s | m | [ρ, λxτ .e]c | [v, t]m Values
m ::= {−−−→v 7→ v} Map Values
c ::= class | n? Constants
G ::= (get e e) | (assoc e e e) Hash Maps
E ::= (. e fldCC) | (. e (mthC

[[
−→
C],C]

−→e)) | (new
[
−→
C]
C −→e) Non-Reflective Java Interop

R ::= (. e fld) | (. e (mth−→e)) | (new C−→e) Reflective Java Interop
M ::= (defmulti τ e) | (defmethod e e e) | (isa? e e) Immutable First-Class Multimethods

σ, τ ::= > | C | (Val l) | (
⋃ −→τ) | x:τ

ψ|ψ−−→
o

τ | (HMapEMA) | (Multi τ τ) Types

M ::= {
−−−→
k 7→ τ} HMap mandatory entries

A ::= {
−→
k } HMap absent entries

E ::= C | P HMap completeness tags
l ::= k | C | nil | b Value types
b ::= true | false Boolean values

ρ ::= {−−−−→x 7→ v} Value environments

ψ ::= τπ(x) | τπ(x) | ψ ⊃ ψ Propositions
| ψ ∧ ψ | ψ ∨ ψ | tt | ff

o ::= π(x) | ∅ Objects
π ::= −→pe Paths
pe ::= class | keyk Path elements
Γ ::=

−→
ψ Proposition environments

t ::= {−−−→v 7→ v} Dispatch tables

ce ::= {m 7→ {
−−−−−−−−−−−→
mth 7→ [[

−→
C], C]}, Class descriptors

f 7→ {
−−−−−−→
fld 7→ C},

c 7→ {[
−→
C]}}

CT ::= {
−−−−−→
C 7→ ce} Class Table

C ::= Object | K | Class | B | Fn | Multi | Map | Void Class literals
I ::= C {

−−−−→
fld : v} Class Values

β ::= wrong | err Wrong or error
α ::= v | β Defined reductions
pol ::= pos | neg Substitution Polarity

Figure A.1. Syntax of Terms, Types, Propositions, and Objects

nil ≡ (Val nil)
true ≡ (Val true)
false ≡ (Val false)

Figure A.2. Type abbreviations

Γ ` e : τ ≡ Γ ` e : τ ; ψ+|ψ− ; o for some ψ+, ψ−and o
τ[o/x] ≡ τ[o/x]pos

ψ[o/x] ≡ ψ[o/x]pos

ψ|ψ[o/x] ≡ ψ|ψ[o/x]pos

o[o/x] ≡ o[o/x]pos

Figure A.3. Judgment abbreviations

25 2015/7/11

T-LOCAL
Γ ` τx

σ = (∪ nil false)
Γ ` x : τ ; σx |σx ; x

T-CONST
Γ ` c : δτ(c) ; tt|ff ; ∅

T-TRUE
Γ ` true : true ; tt|ff ; ∅

T-FALSE
Γ ` false : false ; ff |tt ; ∅

T-NIL
Γ ` nil : nil ; ff |tt ; ∅

T-NUM
Γ ` n : N ; tt|ff ; ∅

T-DO
Γ ` e1 ⇒ e′1 : τ1 ; ψ1+|ψ1− ; o1

Γ, ψ1+ ∨ ψ1− ` e ⇒ e′ : τ ; ψ+|ψ− ; o

Γ ` (do e1 e)⇒ (do e′1 e
′) : τ ; ψ+|ψ− ; o

T-IF
Γ ` e1 ⇒ e′1 : τ1 ; ψ1+|ψ1− ; o1

Γ, ψ1+ ` e2 ⇒ e′2 : τ ; ψ+|ψ− ; o
Γ, ψ1− ` e3 ⇒ e′3 : τ ; ψ+|ψ− ; o

e′ = (if e′1 e
′
2 e
′
3)

Γ ` (if e1 e2 e3)⇒ e′ : τ ; ψ+|ψ− ; o

T-LET
Γ ` e1 ⇒ e′1 : σ ; ψ1+|ψ1− ; o1
ψ′ = (∪ nil false) x ⊃ ψ1+

ψ′′ = (∪ nil false) x ⊃ ψ1−
Γ, σx , ψ

′, ψ′′ ` e2 ⇒ e′2 : τ ; ψ+|ψ− ; o
e′ = (let [x e′1] e′2)

Γ ` (let [x e1] e2)⇒ e′ : τ[o1/x] ; ψ+|ψ−[o1/x] ; o[o1/x]

T-APP

Γ ` e ⇒ e1 : x:σ
ψf+

|ψf−−−−−−−→
of

τ ; ψ+|ψ− ; o

Γ ` e′ ⇒ e′1 : σ ; ψ′+|ψ
′
− ; o′

Γ ` (e e′)⇒ (e1 e
′
1) : τ[o′/x] ; ψf+|ψf−[o′/x] ; of [o′/x]

T-ABS
Γ, σx ` e ⇒ e′ : σ′ ; ψ+|ψ− ; o

τ = x:σ
ψ+|ψ−−−−−−→

o
σ′

Γ ` λxσ .e ⇒ λxσ .e′ : τ ; tt|ff ; ∅

T-CLOS
∃Γ.ρ |= Γ and Γ ` λxτ .e ⇒ λxτ .e′ : σ ; ψ+|ψ− ; o

` [ρ, λxτ .e]c ⇒ [ρ, λxτ .e′]c : σ ; ψ+|ψ− ; o

T-ERROR
Γ ` err⇒ err :⊥ ; ff |ff ; ∅

T-SUBSUME
Γ ` e ⇒ e′ : τ ; ψ+|ψ− ; o

Γ, ψ+ ` ψ
′
+ Γ, ψ− ` ψ

′
−

` τ <: τ ′ ` o <: o′

Γ ` e ⇒ e′ : τ ′ ; ψ′+|ψ
′
− ; o′

Figure A.4. Standard Typing Rules

26 2015/7/11

T-NEW

[
−→
Ci] ∈ CT [C][c]

−−−−−−−−−−→
JTnil(Ci) = τi

−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi JT(C) = τ

Γ ` (new C−→ei)⇒ (new
[
−→
Ci]

C
−→
e′i) : τ ; tt|ff ; ∅

T-NEWSTATIC
−−−−−−−−−→
JT(Ci) = τi JT(C) = τ

−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi

Γ ` (new
[
−→
Ci]

C −→ei)⇒ (new
[
−→
Ci]

C
−→
e′i) : τ ; tt|ff ; ∅

T-FIELD
Γ ` e ⇒ e′ : σ ` σ <: Object TJ(σ) = C1 fld 7→ C2 ∈ CT [C1][f] JTnil(C2) = τ

Γ ` (. e fld)⇒ (. e′ fldC1
C2

) : τ ; tt|tt ; ∅

T-FIELDSTATIC
JT(C1) = σ ` σ <: Object JTnil(C2) = τ Γ ` e ⇒ e′ : σ

Γ ` (. e fldC1
C2

)⇒ (. e′ fldC1
C2

) : τ ; tt|tt ; ∅

T-METHOD
Γ ` e ⇒ e′ : σ

` σ <: Object TJ(σ) = C1 mth 7→ [[
−→
Ci], C2] ∈ CT [C1][m]

−−−−−−−−−−→
JTnil(Ci) = τi

−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi JTnil(C2) = τ

Γ ` (. e (mth−→ei))⇒ (. e′ (mthC1

[[
−→
Ci],C2]

−→
e′i)) : τ ; tt|tt ; ∅

T-METHODSTATIC
−−−−−−−−−→
JT(Ci) = τi JT(C1) = σ ` σ <: Object JTnil(C2) = τ Γ ` e ⇒ e′ : σ

−−−−−−−−−−→
Γ ` ei ⇒ e′i : τi

Γ ` (. e (mthC1

[[
−→
Ci],C2]

−→ei))⇒ (. e′ (mthC1

[[
−→
Ci],C2]

−→
e′i)) : τ ; tt|tt ; ∅

T-CLASS
Γ ` C : (ValC) ; tt|ff ; ∅

T-INSTANCE

Γ ` C {
−−−−→
fld : v} : C ; tt|ff ; ∅

Figure A.5. Java Interop Typing Rules

T-DEFMULTI

σ = x:τ
ψ+|ψ−−−−−−→

o
τ ′ σ′ = x:τ

ψ′
+
|ψ′−−−−−−−→
o′

τ ′′ Γ ` e ⇒ e′ : σ′

Γ ` (defmulti σ e)⇒ (defmulti σ e′) : (Multiσ σ′) ; tt|ff ; ∅

T-DEFMETHOD

τm = x:τ
ψ+|ψ−−−−−−→

o
σ τd = x:τ

ψ′
+
|ψ′−−−−−−−→
o′

σ′

Γ ` em ⇒ e′m : (Multi τm τd)
Γ ` ev ⇒ e′v : τv IsAProps(o′, τv) = ψ′′+|ψ

′′
− Γ, τx , ψ

′′
+ ` eb ⇒ e′b : σ ; ψ+|ψ− ; o e′ = (defmethod e′m e′v λx

τ .e′b)

Γ ` (defmethod em ev λx
τ .eb)⇒ e′ : (Multi τm τd) ; tt|ff ; ∅

T-ISA
Γ ` e ⇒ e1 : σ ; ψ′+|ψ

′
− ; o Γ ` e′ ⇒ e′1 : τ IsAProps(o, τ) = ψ+|ψ−

Γ ` (isa? e e′)⇒ (isa? e1 e
′
1) : B ; ψ+|ψ− ; ∅

T-MULTI

` v ⇒ v′ : τ
−−−−−−−−−→
` vk ⇒ v′k :>

−−−−−−−−−→
` vv ⇒ v′v : σ

` [v, {−−−−−→vk 7→ vv}]m ⇒ [v′, {
−−−−−→
v′k 7→ v′v}]m : (Multiσ τ) ; tt|ff ; ∅

Figure A.6. Multimethod Typing Rules

27 2015/7/11

T-HMAP−−−−−−−−−−−−−→
` vk ⇒ v′k : (Val k)

−−−−−−−−−−→
` vv ⇒ v′v : τv M = {

−−−−→
k 7→ τv}

` {−−−−−→vk 7→ vv} ⇒ {
−−−−−→
v′k 7→ v′v} : (HMapCM) ; tt|ff ; ∅

T-KW
Γ ` k : (Val k) ; tt|ff ; ∅

T-GETHMAP

Γ ` e ⇒ e′ : (
⋃ −−−−−−−−−−→

(HMapEMA)
i

) ; ψ1+|ψ1− ; o Γ ` ek ⇒ e′k : (Val k)
−−−−−−→
M[k] = τ

i

Γ ` (get e ek)⇒ (get e′ e′k) : (
⋃ −→τ i) ; tt|tt ; keyk(x)[o/x]

T-GETHMAPABSENT

Γ ` e ⇒ e′ : (HMapEMA) ; ψ1+|ψ1− ; o Γ ` ek ⇒ e′k : (Val k) k ∈ A
Γ ` (get e ek)⇒ (get e′ e′k) : nil ; tt|tt ; keyk(x)[o/x]

T-GETHMAPPARTIALDEFAULT

Γ ` e ⇒ e′ : (HMapPMA) ; ψ1+|ψ1− ; o Γ ` ek ⇒ e′k : (Val k) k 6∈ dom(M) k 6∈ A
Γ ` (get e ek)⇒ (get e′ e′k) :> ; tt|tt ; keyk(x)[o/x]

T-ASSOCHMAP

Γ ` e ⇒ e′ : (HMapEMA) Γ ` ek ⇒ e′k : (Val k) Γ ` ev ⇒ e′v : τ k 6∈ A e′ = (assoc e′ e′k e
′
v)

Γ ` (assoc e ek ev)⇒ e′ : (HMapEM[k 7→ τ] A) ; tt|ff ; ∅

Figure A.7. Map Typing Rules

SO-REFL
` o <: o

SO-TOP
` o <: ∅

S-REFL
` τ <: τ

S-TOP
` τ <:>

S-UNIONSUPER
∃i. ` τ <: σi

` τ <: (
⋃ −→σ i)

S-UNIONSUB
−−−−−−→
` τi <: σ

i

` (
⋃ −→τ i)<: σ

S-FUNMONO

` x:σ
ψ+|ψ−−−−−−→

o
τ <: Fn

S-OBJECT
` C <: Object

S-SCLASS
` (ValC)<: Class

S-SBOOL
` (Val b)<: B

S-SKW
` (Val k)<: K

S-FUN
` σ′ <: σ ` τ <: τ ′ ψ+ ` ψ

′
+

ψ− ` ψ
′
− ` o <: o′

` x:σ
ψ+|ψ−−−−−−→

o
τ <: x:σ′

ψ′
+
|ψ′−−−−−−−→
o′

τ ′

S-PMULTIFN

` σt <: x:σ
ψ+|ψ−−−−−−→

o
τ ` σd <: x:σ

ψ′
+
|ψ′−−−−−−−→
o′

τ ′

` (Multiσt σd)<: x:σ
ψ+|ψ−−−−−−→

o
τ

S-PMULTIFN

` σt <: x:σ
ψ+|ψ−−−−−−→

o
τ

` σd <: x:σ
ψ′

+
|ψ′−−−−−−−→
o′

τ ′

` (Multiσt σd)<: x:σ
ψ+|ψ−−−−−−→

o
τ

S-PMULTI
` σ <: σ′ ` τ <: τ ′

` (Multiσ τ)<: (Multiσ′ τ ′)

S-MULTIMONO

` (Multix:σ
ψ+|ψ−−−−−−→

o
τ x:σ

ψ′
+
|ψ′−−−−−−−→
o′

τ ′)<: Multi

S-HMAP
∀i.M[ki] = σi and ` σi <: τi A1 ⊇ A2

` (HMapEMA1)<: (HMapE {
−−−→
k 7→ τ}

i
A2)

S-HMAPP
∀i.M[ki] = σi and ` σi <: τi

` (HMapCMA′)<: (HMapP {
−−−→
k 7→ τ}

i
A)

S-HMAPMONO

` (HMapEMA)<: Map

Figure A.8. Subtyping rules

JT(Void) = nil
JT(C) = C
JTnil(Void) = nil
JTnil(C) = (

⋃
nil C)

Figure A.9. Java Type Conversion

28 2015/7/11

δτ(class) = x:> tt|tt−−−−→
class(x)

(
⋃

nil Class)

δτ(n?) = x:>
N x |N x−−−−−→
∅

B

Figure A.10. Constant Typing

δ(class, C {
−−−−→
fld : v}) = C

δ(class, C) = Class
δ(class, [ρ, λxτ .e]c) = Fn
δ(class, [vd, t]m) = Multi
δ(class,m) = Map
δ(class, k) = K
δ(class, n) = N

δ(class, true) = B
δ(class, false) = B
δ(class, nil) = nil

δ(n?, n) = true
δ(n?, e) = false
otherwise

Figure A.11. Primitives

IsAProps(class(π(x)), (ValC)) = Cπ(x)|Cπ(x)
IsAProps(o, (Val l)) = ((Val l)x |(Val l)x)[o/x]

if l 6= C
IsAProps(o, τ) = tt|tt otherwise
IsA(v, v) = true v 6= C
IsA(C,C′) = true ` C <: C′

IsA(v, v′) = false otherwise

Figure A.12. Definition of isa?

GM(t, ve) = vf if −→vfs = {vf}
where −→vfs = {vf |vk 7→ vf ∈ t and IsA(ve, vk) = true}

GM(t, ve) = err otherwise

Figure A.13. Definition of get-method

29 2015/7/11

B-LOCAL
ρ(x) = v

ρ ` x ⇓ v

B-DO
ρ ` e1 ⇓ v1
ρ ` e ⇓ v

ρ ` (do e1 e) ⇓ v

B-LET
ρ ` ea ⇓ va

ρ[x 7→ va] ` e ⇓ v
ρ ` (let [x ea] e) ⇓ v

B-VAL
ρ ` v ⇓ v

B-IFTRUE
ρ ` e1 ⇓ v1

v1 6= false v1 6= nil
ρ ` e2 ⇓ v

ρ ` (if e1 e2 e3) ⇓ v

B-IFFALSE
ρ ` e1 ⇓ false or ρ ` e1 ⇓ nil

ρ ` e3 ⇓ v
ρ ` (if e1 e2 e3) ⇓ v

B-ABS
ρ ` λxτ .e ⇓ [ρ, λxτ .e]c

B-BETACLOSURE
ρ ` ef ⇓ [ρc, λx

τ .eb]c
ρ ` ea ⇓ va

ρc[x 7→ va] ` eb ⇓ v
ρ ` (ef ea) ⇓ v

B-DELTA
ρ ` e ⇓ c
ρ ` e′ ⇓ v
δ(c, v) = v′

ρ ` (e e′) ⇓ v′

B-BETAMULTI
ρ ` e ⇓ [vd, t]m ρ ` e′ ⇓ v′ ρ ` (vd v

′) ⇓ ve GM(t, ve) = vf ρ ` (vf v
′) ⇓ v

ρ ` (e e′) ⇓ v

B-FIELD
ρ ` e ⇓ v

JVMgetstatic[C1, v1, f ld, C2] = v

ρ ` (. e fldC1
C2

) ⇓ v

B-METHOD

ρ ` em ⇓ vm
−−−−−−−→
ρ ` ea ⇓ va

JVMinvokestatic[C1, vm,mth, [
−→
Ca], [−→va], C2] = v

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→ea)) ⇓ v

B-NEW −−−−−−−→
ρ ` ei ⇓ vi

JVMnew[C1, [
−→
Ci], [

−→vi]] = v

ρ ` (new
[
−→
Ci]

C −→ei) ⇓ v

B-DEFMULTI
ρ ` e ⇓ vd
v = [vd, {}]m

ρ ` (defmulti τ e) ⇓ v

B-DEFMETHOD
ρ ` e ⇓ [vd, t]m
ρ ` e′ ⇓ vv
ρ ` ef ⇓ vf

v = [vd, t[vv 7→ vf]]m

ρ ` (defmethod e e′ ef) ⇓ v

B-ISA
ρ ` e1 ⇓ v1
ρ ` e2 ⇓ v2

IsA(v1, v2) = v

ρ ` (isa? e1 e2) ⇓ v

B-ASSOC
ρ ` e ⇓ m
ρ ` ek ⇓ k
ρ ` ev ⇓ vv

v = m[k 7→ vv]

ρ ` (assoc e ek ev) ⇓ v

B-GET
ρ ` e ⇓ m
ρ ` e′ ⇓ k
k ∈ dom(m)
m[k] = v

ρ ` (get e e′) ⇓ v

B-GETMISSING
ρ ` e ⇓ m
ρ ` e′ ⇓ k
k 6∈ dom(m)

ρ ` (get e e′) ⇓ nil

Figure A.14. Operational Semantics

30 2015/7/11

BS-METHODREFL
ρ ` (. e (mth−→e)) ⇓ wrong

BS-FIELDREFL
ρ ` (. e fld) ⇓ wrong

BS-NEWREFL
ρ ` (. e fld) ⇓ wrong

BS-BETA
ρ ` ef ⇓ v

v 6= c v 6= [vd, t]m
v 6= [ρc, λx

τ .eb]c

ρ ` (ef ea) ⇓ wrong

BS-BETAMULTI
ρ ` ef ⇓ [v, t]m

v 6= c v 6= [vd, t]m
v 6= [ρc, λx

τ .eb]c

ρ ` (ef ea) ⇓ wrong

BS-FIELDTARGET
ρ ` e ⇓ v1

v 6= C1 {
−−−−−→
fldi : vi}

ρ ` (. e fldC1
C2

) ⇓ wrong

BS-FIELDMISSING

ρ ` e ⇓ C1 {
−−−−−→
fldi : vi} fld 6∈ {

−−→
fldi}

ρ ` (. e fldC1
C2

) ⇓ wrong

BS-METHODTARGET

ρ ` em ⇓ v v 6= C1 {
−−−−−→
fldi : vi}

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→ea)) ⇓ wrong

BS-METHODARITY
i 6= a

ρ ` (. em (mthC1

[[
−→
Ci],C2]

−→ea)) ⇓ wrong

BS-METHODARG

ρ ` em ⇓ vm
−−−−−−−→
ρ ` ea ⇓ va

∃a. va 6= Ca {
−−−−−→
fldi : vi} or va 6= nil

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→ea)) ⇓ wrong

BS-NEWARG−−−−−−−→
ρ ` ei ⇓ vi

∃i. vi 6= Ci {
−−−−−→
fldi : vi} or vi 6= nil

ρ ` (new
[
−→
Ci]

C −→ei) ⇓ wrong

BS-NEWARITY
i 6= a

ρ ` (new
[
−→
Ci]

C −→ea) ⇓ wrong

BS-ASSOCMAP

ρ ` em ⇓ v v 6= {
−−−−→
(va vb)}

ρ ` (assoc em ek ev) ⇓ wrong

BS-ASSOCKEY

ρ ` em ⇓ {
−−−−→
(va vb)} ρ ` ek ⇓ vk

vk 6= k

ρ ` (assoc em ek ev) ⇓ wrong

BS-GETMAP

ρ ` em ⇓ v v 6= {
−−−−→
(va vb)}

ρ ` (get em ek) ⇓ wrong

BS-GETKEY
ρ ` em ⇓ v ρ ` ek ⇓ vk

v 6= k

ρ ` (get em ek) ⇓ wrong

BS-LOCAL
x 6∈ dom(ρ)

ρ ` x ⇓ wrong

BS-DEFMETHOD
ρ ` em ⇓ vm vm 6= [vd, t]m

ρ ` (defmethod em ev ef) ⇓ wrong

Figure A.15. Stuck programs

31 2015/7/11

BE-ERRORWRONG
ρ ` β ⇓ β

BE-LET
ρ ` ea ⇓ β

ρ ` (let [x ea] e) ⇓ β

BE-DO1
ρ ` e1 ⇓ β

ρ ` (do e1 e) ⇓ β

BE-DO2
ρ ` e1 ⇓ v1
ρ ` e ⇓ β

ρ ` (do e1 e) ⇓ β

BE-IF
ρ ` e1 ⇓ β

ρ ` (if e1 e2 e3) ⇓ β

BE-IFTRUE
ρ ` e1 ⇓ v1

v1 6= false v1 6= nil
ρ ` e2 ⇓ β

ρ ` (if e1 e2 e3) ⇓ β

BE-IFFALSE
ρ ` e1 ⇓ false or ρ ` e1 ⇓ nil

ρ ` e3 ⇓ β
ρ ` (if e1 e2 e3) ⇓ β

BE-BETA1
ρ ` ef ⇓ β

ρ ` (ef ea) ⇓ β

BE-BETA2
ρ ` ef ⇓ vf
ρ ` ea ⇓ β

ρ ` (ef ea) ⇓ β

BE-BETACLOSURE
ρ ` ef ⇓ [ρc, λx

τ .eb]c
ρ ` ea ⇓ va

ρc[x 7→ va] ` eb ⇓ β
ρ ` (ef ea) ⇓ β

BE-BETAMULTI1
ρ ` ef ⇓ [vd,m]m
ρ ` ea ⇓ va

ρ ` (vd va) ⇓ β
ρ ` (ef ea) ⇓ β

BE-BETAMULTI2
ρ ` ef ⇓ [vd,m]m
ρ ` ea ⇓ va

ρ ` (vd va) ⇓ ve
GM(t, ve) = err

ρ ` (ef ea) ⇓ err

BE-DELTA
ρ ` e ⇓ c
ρ ` e′ ⇓ v
δ(c, v) = β

ρ ` (e e′) ⇓ β

BE-FIELD
ρ ` e ⇓ β

ρ ` (. e fldC1
C2

) ⇓ β

BE-METHOD1
ρ ` em ⇓ β

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→e)) ⇓ β

BE-METHOD2
ρ ` em ⇓ vm−−−−−−−−−−−→

ρ ` en−1 ⇓ vn−1

ρ ` en ⇓ β
ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→e)) ⇓ β

BE-METHOD3
ρ ` em ⇓ vm

−−−−−−−→
ρ ` ea ⇓ va

JVMinvokestatic[C1, vm,mth, [
−→
Ca], [−→va], C2] = err

ρ ` (. em (mthC1

[[
−→
Ca],C2]

−→ea)) ⇓ err

BE-NEW1−−−−−−−−−−−→
ρ ` en−1 ⇓ vn−1

ρ ` en ⇓ β
ρ ` (new

[
−→
Ci]

C −→e) ⇓ β

BE-NEW2−−−−−−−→
ρ ` ei ⇓ vi

JVMnew[C1, [
−→
Ci], [

−→vi]] = err

ρ ` (new
[
−→
Ci]

C −→ei) ⇓ err

BE-DEFMULTI
ρ ` ed ⇓ β

ρ ` (defmulti τ ed) ⇓ β

BE-DEFMETHOD1
ρ ` em ⇓ β

ρ ` (defmethod em ev ef) ⇓ β

BE-DEFMETHOD2
ρ ` em ⇓ [vd, t]m

ρ ` ev ⇓ β
ρ ` (defmethod em ev ef) ⇓ β

BE-DEFMETHOD3
ρ ` em ⇓ [vd, t]m
ρ ` ev ⇓ vv
ρ ` ef ⇓ β

ρ ` (defmethod em ev ef) ⇓ β

BE-ISA1
ρ ` e1 ⇓ β

ρ ` (isa? e1 e2) ⇓ β

BE-ISA2
ρ ` e1 ⇓ v1
ρ ` e2 ⇓ β

ρ ` (isa? e1 e2) ⇓ β

BE-ASSOC1
ρ ` em ⇓ β

ρ ` (assoc em ek ev) ⇓ β

BE-ASSOC2
ρ ` em ⇓ {

−−−−→
(va vb)} ρ ` ek ⇓ β

ρ ` (assoc em ek ev) ⇓ β

BE-ASSOC3
ρ ` em ⇓ {

−−−−→
(va vb)} ρ ` ek ⇓ vk ρ ` ev ⇓ β
ρ ` (assoc em ek ev) ⇓ β

BE-GET1
ρ ` em ⇓ β

ρ ` (get em ek) ⇓ β

BE-GET2
ρ ` em ⇓ {

−−−−→
(va vb)} ρ ` ek ⇓ β

ρ ` (get em ek) ⇓ β

Figure A.16. Error and stuck propagation

ρ(x) = v (x, v) ∈ ρ
ρ(keyk(o)) = (get ρ(o) k)
ρ(class(o)) = (class ρ(o))

Figure A.17. Path translation

32 2015/7/11

update((
⋃ −→τ), ν, π) = (

⋃ −−−−−−−−−−→
update(τ, ν, π))

update(τ, (ValC), π :: class) = update(τ, C, π)
update(τ, ν, π :: class) = τ
update((HMapEMA), ν, π :: keyk) = (HMapEM[k 7→ update(τ, ν, π)] A) ifM[k] = τ

update((HMapEMA), ν, π :: keyk) = ⊥ if ` nil 6<: ν and k ∈ A
update((HMapPMA), τ, π :: keyk) = (∪ (HMapPM[k 7→ τ] A) if ` nil <: τ, k 6∈ dom(M) and k 6∈ A

(HMapPM (A ∪ {k})))
update((HMapPMA), ν, π :: keyk) = (HMapPM[k 7→ update(>, ν, π)] A) if ` nil 6<: ν, k 6∈ dom(M) and k 6∈ A
update(τ, ν, π :: keyk) = τ
update(τ, σ, ε) = restrict(τ, σ)
update(τ, σ, ε) = remove(τ, σ)

restrict(τ, σ) = ⊥ if 6 ∃v. ` v : τ ; ψ ; o and ` v : σ ; ψ′ ; o′

restrict(τ, σ) = τ if ` τ <: σ
restrict(τ, σ) = σ otherwise

remove(τ, σ) = ⊥ if ` τ <: σ
remove(τ, σ) = τ otherwise

Figure A.18. Type Update

M-OR
ρ |= ψ1 or ρ |= ψ2

ρ |= ψ1 ∨ ψ2

M-IMP
ρ |= ψ1 implies ρ |= ψ2

ρ |= ψ1 ⊃ ψ2

M-AND
ρ |= ψ1 ρ |= ψ2

ρ |= ψ1 ∧ ψ2

M-TOP
ρ |= tt

M-TYPE
` ρ(π(x)) : τ ; ψ+|ψ− ; o

ρ |= τπ(x)

M-NOTTYPE
` ρ(π(x)) : σ ; ψ+|ψ− ; o

there is no v such that ` v : τ ; ψ1+|ψ1− ; o1 and ` v : σ ; ψ2+|ψ2− ; o2

ρ |= τπ(x)

Figure A.19. Satisfaction Relation

L-ATOM
ψ ∈ Γ

Γ ` ψ
L-TRUE
Γ ` tt

L-FALSE
Γ ` ff

Γ ` ψ

L-ANDI
Γ ` ψ1

Γ ` ψ2

Γ ` ψ1 ∧ ψ2

L-ANDE
Γ, ψ1, ψ2 ` ψ

Γ, ψ1 ∧ ψ2 ` ψ

L-IMPLI
Γ, ψ1 ` ψ2

Γ ` ψ1 ⊃ ψ2

L-IMPLE
Γ ` ψ1

Γ ` ψ1 ⊃ ψ2

Γ ` ψ2

L-ORI
Γ ` ψ1 or Γ ` ψ2

Γ ` ψ1 ∨ ψ2

L-ORE
Γ, ψ1 ` ψ
Γ, ψ2 ` ψ

Γ, ψ1 ∨ ψ2 ` ψ

L-SUB
Γ ` τπ(x) ` τ <: σ

Γ ` σπ(x)

L-SUBNOT
Γ ` σπ(x) ` τ <: σ

Γ ` τπ(x)

L-BOT
Γ ` ⊥π(x)

Γ ` ψ

L-UPDATE
Γ ` τπ′(x) Γ ` νπ(π′(x))

Γ ` update(τ, ν, π)π′(x)

(The metavariable ν ranges over τ and τ (without variables).)

Figure A.20. Proof System

33 2015/7/11

ψ+|ψ−[o/x]pol = ψ+[o/x]pol |ψ−[o/x]pol

νπ(x)[π
′(y)/x]

pol
= (ν[π′(y)/x]

pol
)π(π′(y))

νπ(x)[∅/x]pos = tt

νπ(x)[∅/x]neg = ff

νπ(x)[o/z]pol = νπ(x) x 6= z and z 6∈ fv(ν)
νπ(x)[o/z]pos = tt x 6= z and z ∈ fv(ν)
νπ(x)[o/z]neg = ff x 6= z and z ∈ fv(ν)

tt[o/x]pol = tt

ff [o/x]pol = ff

(ψ1 ⊃ ψ2)[o/x]pos = ψ1[o/x]neg ⊃ ψ2[o/x]pos

(ψ1 ⊃ ψ2)[o/x]neg = ψ1[o/x]pos ⊃ ψ2[o/x]neg

(ψ1 ∨ ψ2)[o/x]pol = ψ1[o/x]pol ∨ ψ2[o/x]pol

(ψ1 ∧ ψ2)[o/x]pol = ψ1[o/x]pol ∧ ψ2[o/x]pol

π(x)[π′(y)/x]
pol

= π(π′(y))

π(x)[∅/x]pol = ∅
π(x)[o/z]pol = π(x) x 6= z

∅[o/x]pol = ∅
Substitution on types is capture-avoiding structural recursion.

Figure A.21. Substitution

34 2015/7/11

